micro-framework Documentation
Release 2.0.9

phpmv

Feb 22, 2019

Quick-starts

10

11

12

13

14

15

16

17

18

19

20

Quick start with console
Quick start with web tools
Ubiquity-devtools installation
Project creation

Project configuration
Devtools usage

URLs

Router

Controllers

CRUD Controllers

Auth Controllers

Models generation

ORM

DAO

Request

Response

Session

Cookie

Views

Normalizers

19

21

23

27

31

35

45

51

63

71

73

81

85

89

91

95

97

99

21

22

23

24

25

26

27

Validators

Translation module
Rest

External libraries
Ubiquity Caching
Ubiquity dependencies

Indices and tables

101

103

105

107

109

111

113

CHAPTER 1

Quick start with console

Note: If you do not like console mode, you can switch to quick-start with web tools (UbiquityMyAdmin).

1.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

1.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Test your recent installation by doing:

’Ubiquity version

You can get at all times help with a command by typing: Ubiquity help followed by what you are looking for.

Example :

Ubiquity project

http://getcomposer.org/

micro-framework Documentation, Release 2.0.9

1.3 Project creation

Create the quick-start projet with Semantic-UI integration

’Ubiquity new quick-start -g=semantic

1.4 Directory structure

The project created in the quick-start folder has a simple and readable structure:

the app folder contains the code of your future application:

app
cache
config
controllers
models

views

1.5 Start-up

Go to the newly created folder quick-start and start the build-in php server:

’Ubiquity serve

Check the correct operation at the address http://127.0.0.1:8090:

2 Chapter 1. Quick start with console

micro-framework Documentation, Release 2.0.9

. quick-start
<%

C @

() 127.0.0.1:3090 &

Welcome to Ubiquity

Version 2.0.9

Sernantic-Ul Button

It works !

Page informations

Controller : controllers\Main
Action : index

Route: default

Path : _default/

Template :

Ubiquity website Guide Doc API GitHub UbiquityMyAdmin

Note: If port 8090 is busy, you can start the server on another port using -p option.

’Ubiquity serve -p=

1.6 Controller

The console application dev-tools saves time in repetitive operations. We go through it to create a controller.

’Ubiquity controller DefaultController

/html/quick-start

- Creation of the Controller DefaultController at the location app/controllers/DefaultController.php

We can then edit app/controllers/DefaultController file in our favorite IDE:

Listing 1: app/controllers/DefaultController.php

(continues on next page)

1.6. Controller

- o v s

micro-framework Documentation, Release 2.0.9

(continued from previous page)

Add the traditional message, and test your page at http://127.0.0.1:8090/DefaultController

Listing 2: app/controllers/DefaultController.php

For now, we have not defined routes, Access to the application is thus made according to the following scheme:
controllerName/actionName/param

The default action is the index method, we do not need to specify it in the url.

1.7 Route

Important: The routing is defined with the annotation @route and is not done in a configuration file: it’s a design
choice.

The automated parameter set to true allows the methods of our class to be defined as sub routes of the main route
/hello.

Listing 3: app/controllers/DefaultController.php

1.7.1 Router cache

Important: No changes on the routes are effective without initializing the cache. Annotations are never read at
runtime. This is also a design choice.

4 Chapter 1. Quick start with console

micro-framework Documentation, Release 2.0.9

‘We can use the console for the cache re-initialization:

Ubiquity init-cache

cache directory is /var/www/html/quick-start/app/cache/
Models directory is /var/wwe/html/quick-start/app/models
Models cache reset

Controllers directory is /var/www/html/quick-start/app/controllers
Router cache reset

Controllers directory is /var/www/html/quick-start/app/controllers
Rest cache reset

Let’s check that the route exists:

’Ubiquity info:routes

shellos({index/)? controllershDefaultController

We can now test the page at http://127.0.0.1:8090/hello

1.8 Action & route with parameters

We will now create an action (sayHello) with a parameter (name), and the associated route (to): The route will use the
parameter name of the action:

’Ubiquity action DefaultController.sayHello —-p=name -r=to/{name}/

You need to re-init Router cache to apply this update with init-cache command

The action sayHelle is created in controller controllersi\DefaultController

After re-initializing the cache (init-cache command), the info:routes command should display:

Jhello/({index/)? controllershDefaultController index

fhellosto/(.+2)/ sayHello [mame*]

Change the code in your IDE: the action must say Hello to somebody. . .

1.8. Action & route with parameters 5

micro-framework Documentation, Release 2.0.9

Listing 4: app/controllers/DefaultController.php

and test the page at http://127.0.0.1:8090/hello/to/Mr SMITH

1.9 Action, route parameters & view

We will now create an action (information) with tow parameters (title and message), the associated route (info), and a
view to display the message: The route will use the two parameters of the action.

Ubiquity action DefaultController.information -p=title,message= -r=info/
~{title}/{message} -v

Note: The -v (—view) parameter is used to create the view associated with the action.

After re-initializing the cache, we now have 3 routes:

fhello/(index/)? controllersi\DefaultController index

fhellostos/(.+?)/ sayHello [name*]

fhellosinfos/ (. +2)/(. "7 information [title*,message]

Let’s go back to our development environment and see the generated code:

Listing 5: app/controllers/DefaultController.php

We need to pass the 2 variables to the view:

(continues on next page)

6 Chapter 1. Quick start with console

micro-framework Documentation, Release 2.0.9

(continued from previous page)

And we use our 2 variables in the associated twig view:

Listing 6: app/views/DefaultController/information.html

hl {{title}} hl
div {{message | raw}} div

We can test our page at http://127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet
simple It’s obvious

(® 127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet simple

Quick start

Ukiquity is quiet simple

1.9. Action, route parameters & view 7

micro-framework Documentation, Release 2.0.9

8 Chapter 1. Quick start with console

CHAPTER 2

Quick start with web tools

2.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

2.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Test your recent installation by doing:

’Ubiquity version

You can get at all times help with a command by typing: Ubiquity help followed by what you are looking for.

Example :

’Ubiquity project

2.3 Project creation

Create the quick-start projet with UbiquityMyAdmin interface (the -a option) and Semantic-UI integration

http://getcomposer.org/

micro-framework Documentation, Release 2.0.9

’Ubiquity new quick-start -g=semantic -a

2.4 Directory structure

The project created in the quick-start folder has a simple and readable structure:

the app folder contains the code of your future application:

app
cache
config
controllers
models
views

2.5 Start-up

Go to the newly created folder quick-start and start the build-in php server:

’Ubiquity serve

Check the correct operation at the address http://127.0.0.1:8090:

- quick-start
e

Version 2.0.9

Sermantic-Ul Button

It works !

Ubiquity website

¢ @ 127.0.0.1:8090 o In @O =

Welcome to Ubiquity

Page informations
+ Controller : controllers\Main

o s Action:index

+ Route: _default
e Path:_default/

+ Template:

Guide

Doc APl GitHub UbiquityMyAdmin

10

Chapter 2. Quick start with web tools

micro-framework Documentation, Release 2.0.9

Note: If port 8090 is busy, you can start the server on another port using -p option.

Ubiquity serve -p=¢

2.6 Controller

Goto admin interface by clicking on the button UbiquityMyAdmin:
UbiguityMyAdmin

The web application UbiquityMyAdmin saves time in repetitive operations.

ﬁ UbiquityMyAdmin models routes controllers cache rest config git 520 logs translate

¢g UbiquityMyAdmin

Ubigquity framework administration web-tools

' Models a: Config

Used to perform CRUD operations on data. Configuration variables
& Routes O Git
Displays defined routes with annotations Git versioning
o Controllers Seo
v G
Displays controllers and actions Search Engine Optimization
* Cache i-E Logs
Annotations, models, router and controller cache Log files
= Rest Translate
—] A |]
Restfull web service Translation module

We go through it to create a controller.

Go to the controllers part, enter DefaultController in the controllerName field and create the controller:

View DefaultControl IerI + Create controller

The controller DefaultController is created:

2.6. Controller 11

micro-framework Documentation, Release 2.0.9

V The DefaultController controller has been created in C:\xampp\htdocs\quick-start-2\ ubiquity‘\.\app\controllers\DefaultController.php.

View + Create controller + Create special controller Y Filter controllers

Default

Controller Action [routes]
values

2 controllers\DefaultController + ¥ index()

+

L4 controllersiindexController

We can then edit app/controllers/DefaultController file in our favorite IDE:

Listing 1: app/controllers/DefaultController.php

Add the traditional message, and test your page at http://127.0.0.1:8090/DefaultController

Listing 2: app/controllers/DefaultController.php

For now, we have not defined routes, Access to the application is thus made according to the following scheme:
controllerName/actionName/param

The default action is the index method, we do not need to specify it in the url.

2.7 Route

Important: The routing is defined with the annotation @route and is not done in a configuration file: it’s a design
choice.

The automated parameter set to true allows the methods of our class to be defined as sub routes of the main route
/hello.

Listing 3: app/controllers/DefaultController.php

(continues on next page)

12 Chapter 2. Quick start with web tools

micro-framework Documentation, Release 2.0.9

(continued from previous page)

2.7.1 Router cache

Important: No changes on the routes are effective without initializing the cache. Annotations are never read at
runtime. This is also a design choice.

‘We can use the web tools for the cache re-initialization:

Go to the Routes section and click on the re-init cache button

£ (Re-)Init router cache

The route now appears in the interface:

= Routes

Displays defined routes with annotations

o Router cache entry is /var/www/html/quick-start/ubiquity/./app/cache/controllers/routes.default.cache.php

= (Re-)Init router cache http://127.0.0.1:8090 Q

Path Methods Action & parameters Cache Expired Name
% controllers\DefaultController::class

& /hello/(index/)? index () DefaultController-index

We can now test the page by clicking on the GET button or by going to the address http://127.0.0.1:8090/
hello

2.8 Action & route with parameters

We will now create an action (sayHello) with a parameter (name), and the associated route (to): The route will use the
parameter name of the action:

Go to the Controllers section:
¢ click on the + button associated with DefaultController,

¢ then select Add new action in.. item.

2.8. Action & route with parameters 13

micro-framework Documentation, Release 2.0.9

Controller
- controllers\DefaultController =+

Add new action in controllers\DefaultController...

Enter the action information in the following form:

Creating a new action in controller

Controller

controllers\DefaultController -

Action & parameters

sayHello name

Implementation

echo 'Hello ".$name.'!";

Create associated view

' Addroute..

to/fname}/ - o

Validate Close

After re-initializing the cache with the orange button, we can see the new route hello/to/{name}:

Default
Controller Action [routes] au
values
¥ index() & /hello/lindexs)?

> controllers\DefaultController +

¥ sayHello(name) & /hellofto/(+2)f

Check the route creation by going to the Routes section:

14 Chapter 2. Quick start with web tools

micro-framework Documentation, Release 2.0.9

Path Methods Action & parameters Cache Expired Name
% controllers\DefaultController::class

& /hellof(index/)? index () DefaultController-indesx

& /helloftol(.+2)/ sayHello (name*) DefaultController-sayHello GET
We can now test the page by clicking on the GET button:

GET:/hello/to/(.+?)/

Required URL parameters
You must complete the following parameters before continuing navigation testing

+
Name

Mr SMITH

Validate

‘We can see the result:

GET:/hello/to/(.+?)/

Hello Mr SMITH!

We could directly goto http://127.0.0.1:8090/hello/to/Mr SMITH address to test

2.9 Action, route parameters & view

POST -

Close

Close

We will now create an action (information) with tow parameters (title and message), the associated route (info), and a

view to display the message: The route will use the two parameters of the action.

In the Controllers section, create another action on DefaultController:

Controller
v controllers\DefaultController +

Add new action in controllers\DefaultController...

Enter the action information in the following form:

2.9. Action, route parameters & view

15

micro-framework Documentation, Release 2.0.9

Creating a new action in controller

Controller

controllers\DefaultController -

Action & parameters
information title,message="nothing’

Implementation

¥ Create associated view

« Addroute..

info/{title}imessage}/ -

A

Validate Close

Note: The view checkbox is used to create the view associated with the action.

After re-initializing the cache, we now have 3 routes:

Controller Action [routes] Default values

¥ index() ® /hello/(index/)?

¥ sayHello (name) & /hellofto/(+2)/
> controllers\DefaultController +

¥ information (title, message}) & /hello/info/(+2)/("7)

message="nothing"
B DefaultController/information.html

Let’s go back to our development environment and see the generated code:

Listing 4: app/controllers/DefaultController.php

We need to pass the 2 variables to the view:

16 Chapter 2. Quick start with web tools

micro-framework Documentation, Release 2.0.9

And we use our 2 variables in the associated twig view:

Listing 5: app/views/DefaultController/information.html

hl {{title}} hl
div {{message | raw}} div

We can test our page at http://127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet

simple It’s obvious

(@ 127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet simple

Quick start

Ubiquity is quiet simple

2.9. Action, route parameters & view

17

micro-framework Documentation, Release 2.0.9

18 Chapter 2. Quick start with web tools

CHAPTER 3

Ubiquity-devtools installation

3.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

3.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Make sure to place the ~/ . composer/vendor/bin directory in your PATH so the Ubiquity executable can be
located by your system.

Once installed, the simple Ubiquity new command will create a fresh Ubiquity installation in the directory you
specify. For instance, Ubiquity new blog would create a directory named blog containing an Ubiquity project:

Ubiquity new blog —-g=semantic

The semantic option adds Semantic-UI for the front end.

You can see more options about installation by reading the Project creation section.

19

http://getcomposer.org/

micro-framework Documentation, Release 2.0.9

20 Chapter 3. Ubiquity-devtools installation

CHAPTER 4

Project creation

After installing Ubiquity-devtools installation, in a bash console, call the new command in the root folder of your web
server :

4.1 Samples

A simple project

’Ubiquity new projectName

A project with Semantic-UI integration

’Ubiquity new projectName -g=semantic

A project with UbiquityMyAdmin interface and Semantic-UI integration

’Ubiquity new projectName —-g=semantic -a

4.2 Installer arguments

short name | name role default Allowed values

b dbName Sets the database name.

S serverName | Defines the db server address. 127.0.0.1

p port Defines the db server port. 3306

u user Defines the db server user. root

w password Defines the db server password. ©

q phpmv Integrates phpMv-UI toolkit. false semantic,bootstrap,ui
m all-models Creates all models from db. false

a admin Adds UbiquityMyAdmin interface. | false

21

micro-framework Documentation, Release 2.0.9

4.3 Arguments usage

4.3.1 short names

Example of creation of the blog project, connected to the blogDb database, with generation of all models

Ubiquity new blog -b=blogDb -m=

4.3.2 long names

Example of creation of the blog project, connected to the bogDb database, with generation of all models and integra-
tion of phpMv-toolkit

’Ubiquity new blog —--dbName=blogDb --all-models= ——phpmv=semantic

4.4 Testing

To start the embedded web server and test your pages, run from the application root folder:

’Ubiquity serve

The web server is started at 127.0.0.1:8090

22 Chapter 4. Project creation

CHAPTER B

Project configuration

Normally, the installer limits the modifications to be performed in the configuration files and your application is
operational after installation

Menu B3 test-website X +

C B8 © |127.0.0./test-website/

Welcome to Ubiquity

Version 2.0.0-beta.1

Semantic-Ul Button

ltworks !
Page informations

* Controller : controllers\Main
o ¢ Action:index
* Route:_default

¢ Path:_default/

* Template : app/view/index.html

Ubiquity website Guide Doc APl GitHub UbiquityMyAdmin

127.0.0.1 kobject-websita/Admin

23

micro-framework Documentation, Release 2.0.9

5.1 Main configuration

The main configuration of a project is localised in the app/conf/config.php file.

Listing 1: app/conf/config.php

=>

5.2 Services configuration

Services loaded on startup are configured in the app/conf/services.php file.

Listing 2: app/conf/services.php

/+x1if ($Sconfig["test"]) {
\Ubiquity\log\Logger::init ($configqg);

Sconfig["siteUrl"]="http://127.0.0.1:8090/";
} o/

5.3 Pretty URLs

5.3.1 Apache

The framework ships with an .htaccess file that is used to allow URLs without index.php. If you use Apache to serve
your Ubiquity application, be sure to enable the mod_rewrite module.

24 Chapter 5. Project configuration

micro-framework Documentation, Release 2.0.9

Listing 3: .htaccess

AddDefaultCharset UTF-8
<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /blog/
RewriteCond $%{REQUEST_FILENAME} !-f

RewriteCond $%{HTTP_ACCEPT} ! (.ximages.x)
RewriteRule " (.*)$ index.php?c= [L,QSA]
</IfModule>
5.3.2 Nginx

On Nginx, the following directive in your site configuration will allow “pretty” URLs:

/
/7 . 2e=

5.3. Pretty URLs 25

micro-framework Documentation, Release 2.0.9

26 Chapter 5. Project configuration

CHAPTER O

Devtools usage

6.1 Project creation

See Project creation to create a project.

Tip: For all other commands, you must be in your project folder or one of its subfolders.

Important: The .ubiquity folder created automatically with the project allows the devtools to find the root folder
of the project. If it has been deleted or is no longer present, you must recreate this empty folder.

6.2 Controller creation

6.2.1 Specifications

e command : controller

e Argument: controller—-name

e aliases : create—controller

6.2.2 Parameters

short name

name

role

default

Allowed values

v

view

Creates the associated view index.

true

true, false

27

micro-framework Documentation, Release 2.0.9

6.2.3 Samples:

Creates the controller

ClientController.php:

controllers\ClientController

class in app/controllers/

’Ubiquity controller ClientController

Creates the controller

controllers\ClientController

class in app/controllers/

ClientController.php and the associated view in app/views/ClientController/index.html:

’Ubiquity controller ClientController -v

6.3 Action creation

6.3.1 Specifications

e command : action

e Argument: controller-name.action-name

e aliases : new—action

6.3.2 Parameters

default | Allowed values

short name | name role

p params The action parameters (or arguments). a,b=5 or $a,$b,$c
T route The associated route path. /path/to/route

v create-view | Creates the associated view. false true,false

6.3.3 Samples:

Adds the action al1l in controller Users:

Ubiquity action Users.all

code result:

Listing 1: app/controllers/Users.php

28

Chapter 6. Devtools usage

micro-framework Documentation, Release 2.0.9

Adds the action display in controller Users with a parameter:

Ubiquity action Users.display —-p=idUser

code result:

Listing 2: app/controllers/Users.php

Adds the action display with an associated route:

Ubiquity action Users.display —-p=idUser -r=/users/display/{idUser}

code result:

Listing 3: app/controllers/Users.php

Adds the action search with multiple parameters:

Ubiquity action Users.search —-p=name,address=

code result:

Listing 4: app/controllers/Users.php

(continues on next page)

6.3. Action creation

29

micro-framework Documentation, Release 2.0.9

(continued from previous page)

Adds the action search and creates the associated view:

’Ubiquity action Users.search -p=name,address -v

6.4 Model creation

Note: Optionally check the database connection settings in the app/config/config.php file before running these com-
mands.

To generate a model corresponding to the user table in database:

’Ubiquity model user

6.5 All models creation

For generating all models from the database:

’ Ubiquity all-models

6.6 Cache initialization

To initialize the cache for routing (based on annotations in controllers) and orm (based on annotations in models) :

’ Ubiquity init-cache

30 Chapter 6. Devtools usage

[S

CHAPTER /

URLs

like many other frameworks, if you are using router with it’s default behavior, there is a one-to-one relationship
between a URL string and its corresponding controller class/method. The segments in a URI normally follow this
pattern:

7.1 Default method

When the URL is composed of a single part, corresponding to the name of a controller, the index method of the
controller is automatically called :

URL :

Controller :

Listing 1: app/controllers/Products.php

//Default action

7.2 Required parameters

If the requested method requires parameters, they must be passed in the URL:

31

micro-framework Documentation, Release 2.0.9

Controller :

Listing 2: app/controllers/Products.php

Valid Urls :

/ / /
/ / /10/
/ / /

7.3 Optional parameters

The called method can accept optional parameters.
If a parameter is not present in the URL, the default value of the parameter is used.

Controller :

Listing 3: app/controllers/Products.php

Valid Urls :

/ / /
/ / / /
/ / / /

7.4 Case sensitivity

On Unix systems, the name of the controllers is case-sensitive.

Controller :

Listing 4: app/controllers/Products.php

Urls :
/ /
/ / o
/ / not,,

32 Chapter 7. URLs

micro-framework Documentation, Release 2.0.9

7.5 Routing customization

The Router and annotations of controller classes allow you to customize URLs.

7.5. Routing customization 33

micro-framework Documentation, Release 2.0.9

34 Chapter 7. URLs

woR W =

CHAPTER 8

Router

Routing can be used in addition to the default mechanism that associates controller/action/{parameters}
with an url.

8.1 Dynamic routes

Dynamic routes are defined at runtime. It is possible to define these routes in the app/config/services.php file.

Important: Dynamic routes should only be used if the situation requires it:
* in the case of a micro-application
* if a route must be dynamically defined

In all other cases, it is advisable to declare the routes with annotations, to benefit from caching.

8.1.1 Callback routes

The most basic Ubiquity routes accept a Closure. In the context of micro-applications, this method avoids having to
create a controller.

Listing 1: app/config/services.php

Callback routes can be defined for all http methods with:

* Router::post

35

[e Y S P S

micro-framework Documentation, Release 2.0.9

e Router::put
* Router::delete
* Router::patch

* Router::options

8.1.2 Controller routes
Routes can also be associated more conventionally with an action of a controller:

Listing 2: app/config/services.php

The method FooController: :index () will be accessible via the url /bar.

In this case, the FooController must be a class inheriting from UbiquitycontrollersController or one of its sub-
classes, and must have an index method:

Listing 3: app/controllers/FooController.php

8.1.3 Default route
The default route matches the path /. It can be defined using the reserved path _default

Listing 4: app/config/services.php

8.2 Static routes

Static routes are defined using the @route annotation on controller methods.

Note: These annotations are never read at runtime. It is necessary to reset the router cache to take into account the
changes made on the routes.

36 Chapter 8. Router

micro-framework Documentation, Release 2.0.9

8.2.1 Creation

Listing 5: app/controllers/ProductsController.php

The method Products: : index () will be accessible via the url /products.

8.2.2 Route parameters
A route can have parameters:

Listing 6: app/controllers/ProductsController.php

13 // $value will equal the dynamic part of the URL
14 // e.g. at /products/brocolis, then $value='brocolis'
15 VA

8.2.3 Route optional parameters
A route can define optional parameters, if the associated method has optional arguments:

Listing 7: app/controllers/ProductsController.php

L S

(continues on next page)

8.2. Static routes 37

T

micro-framework Documentation, Release 2.0.9

(continued from previous page)

//

8.2.4 Route requirements

php being an untyped language, it is possible to add specifications on the variables passed in the url via the attribute

requirements.

Listing 8: app/controllers/ProductsController.php

//

The defined route matches these urls:
* products/all/1/20
e products/all/5/

but not with that one:

e products/all/test

8.2.5 Route http methods
It is possible to specify the http method or methods associated with a route:

Listing 9: app/controllers/ProductsController.php

(continues on next page)

38

Chapter 8. Router

B T = Y S T

S O S

micro-framework Documentation, Release 2.0.9

(continued from previous page)

The methods attribute can accept several methods: @route ("testMethods", "methods"=>["get",
"post", "delete"])

It is also possible to use specific annotations @get, @post... @get ("products")

8.2.6 Route name

It is possible to specify the name of a route, this name then facilitates access to the associated url. If the name attribute
is not specified, each route has a default name, based on the pattern controllerName_methodName.

Listing 10: app/controllers/ProductsController.php

8.2.7 URL or path generation

Route names can be used to generate URLSs or paths.

Linking to Pages in Twig

a ="{{ () }} Products a

8.2.8 Global route

The @route annotation can be used on a controller class :

Listing 11: app/controllers/ProductsController.php

(continues on next page)

8.2. Static routes 39

micro-framework Documentation, Release 2.0.9

(continued from previous page)

In this case, the route defined on the controller is used as a prefix for all controller routes : The generated route for the
action display is /product/all
automated routes

If a global route is defined, it is possible to add all controller actions as routes (using the global prefix), by setting the
automated parameter :

Listing 12: app/controllers/ProductsController.php

inherited routes

With the inherited attribute, it is also possible to generate the declared routes in the base classes, or to generate routes
associated with base class actions if the automated attribute is set to true in the same time.

The base class:

Listing 13: app/controllers/ProductsBase.php

(continues on next page)

40 Chapter 8. Router

R o R

micro-framework Documentation, Release 2.0.9

(continued from previous page)

The derived class using inherited attribute:

Listing 14: app/controllers/ProductsController.php

The inherited attribute defines the 2 routes contained in ProductsBase:
* /products/(index/)?
e /products/sort/{name}

If the automated and inherited attributes are combined, the base class actions are also added to the routes.

8.2.9 Route priority

The prority parameter of a route allows this route to be resolved more quickly.

The higher the priority parameter, the more the route will be defined at the beginning of the stack of routes in the
cache.

In the example below, the products/all route will be defined before the /products route.

Listing 15: app/controllers/ProductsController.php

(continues on next page)

8.2. Static routes 41

micro-framework Documentation, Release 2.0.9

(continued from previous page)

8.3 Routes response caching

It is possible to cache the response produced by a route:

In this case, the response is cached and is no longer dynamic.

8.3.1 Cache duration

The duration is expressed in seconds, if it is omitted, the duration of the cache is infinite.

8.3.2 Cache expiration

It is possible to force reloading of the response by deleting the associated cache.

8.4 Dynamic routes caching

Dynamic routes can also be cached.

Important: This possiblity is only useful if this caching is not done in production, but at the time of initialization of
the cache.

Checking routes with devtools :

Ubiquity info:routes

42 Chapter 8. Router

micro-framework Documentation, Release 2.0.9

8.4. Dynamic routes caching 43

micro-framework Documentation, Release 2.0.9

44 Chapter 8. Router

R L N v R

CHAPTER 9

Controllers

A controller is a PHP class inheriting from Ubiquity\controllers\Controller, providing an entry point in
the application. Controllers and their methods define accessible URLs.

9.1 Controller creation

The easiest way to create a controller is to do it from the devtools.

From the command prompt, go to the project folder. To create the Products controller, use the command:

Ubiquity controller Products

The Products . php controller is created in the app/controllers folder of the project.

Listing 1: app/controllers/Products.php

It is now possible to access URLs (the i ndex method is solicited by default):

/
/ /

Note: A controller can be created manually. In this case, he must respect the following rules:

45

L Y B P

micro-framework Documentation, Release 2.0.9

* The class must be in the app/controllers folder
* The name of the class must match the name of the php file
* The class must inherit from ControllerBase and be defined in the namespace controllers

¢ and must override the abstract index method

9.2 Methods

9.2.1 public

The second segment of the URI determines which public method in the controller gets called. The “index” method is
always loaded by default if the second segment of the URI is empty.

Listing 2: app/controllers/First.php

The hello method of the First controller makes the following URL available:

/ /

9.2.2 method arguments
the arguments of a method must be passed in the url, except if they are optional.

Listing 3: app/controllers/First.php

The hello method of the First controller makes the following URLs available:

/ / /
/ / /7

9.2.3 private

Private or protected methods are not accessible from the URL.

46 Chapter 9. Controllers

micro-framework Documentation, Release 2.0.9

9.3 Default controller

The default controller can be set with the Router, in the services.php file

Listing 4: app/config/services.php

In this case, access to the example.com/ URL loads the controller First and calls the default index method.

9.4 views loading

9.4.1 loading

Views are stored in the app/views folder. They are loaded from controller methods. By default, it is possible to
create views in php, or with twig. Twig is the default template engine for html files.

php view loading
If the file extension is not specified, the load View method loads a php file.

Listing 5: app/controllers/First.php

//loads the view app/views/index.php
->

twig view loading
If the file extension is html, the load View method loads an html twig file.

Listing 6: app/controllers/First.php

//loads the view app/views/index.html
->

9.4.2 view parameters

One of the missions of the controller is to pass variables to the view. This can be done at the loading of the view, with
an associative array:

9.3. Default controller 47

https://twig.symfony.com

micro-framework Documentation, Release 2.0.9

Listing 7: app/controllers/First.php

//loads the view app/views/index.html
> => =>

The keys of the associative array create variables of the same name in the view. Using of this variables in Twig:

Listing 8: app/views/index.html

hl {{message}} {{recipient}} hl

Variables can also be passed before the view is loaded:

//passing one variable

—> -> =>
//passing an array of 2 variables

—> -> => =>
//loading the view that now contains 3 variables

->

9.4.3 view result as string

It is possible to load a view, and to return the result in a string, assigning true to the 3rd parameter of the loadview
method :

9.4.4 multiple views loading
A controller can load multiple views:

Listing 9: app/controllers/Products.php

Important: A view is often partial. It is therefore important not to systematically integrate the html and body tags
defining a complete html page.

48 Chapter 9. Controllers

micro-framework Documentation, Release 2.0.9

9.4.5 views organization

It is advisable to organize the views into folders. The most recommended method is to create a folder per controller,
and store the associated views there. To load the index . html view, stored in app/views/First:

| >

9.5 initialize and finalize
9.6 Access control

9.7 Forwarding

9.8 Dependency injection
9.9 namespaces

9.10 Super class

9.5. initialize and finalize 49

micro-framework Documentation, Release 2.0.9

50 Chapter 9. Controllers

cHAaPTER 10

CRUD Controllers

The CRUD controllers allow you to perform basic operations on a Model class:
* Create
e Read
* Update

¢ Delete

10.1 Creation

In the admin interface (web-tools), activate the Controllers part, and choose create Crud controller:
=+ Create special controller

Then fill in the form:
¢ Enter the controller name
¢ Select the associated model

¢ Then click on the validate button

51

micro-framework Documentation, Release 2.0.9

Adding a CRUD controller

Name Model
controllers\ UsersController models\User -
Addroute...

@ Validate O Cancel

10.2 Description of the features

The generated controller:

Listing 1: app/controllers/Products.php

<?

Test the created controller by clicking on the get button in front of the index action:

% index()| 4 Createview UsersController/index htm GET POST -

52 Chapter 10. CRUD Controllers

micro-framework Documentation, Release 2.0.9

10.2.1 Read (index action)

GET:UsersController/index

Id Name Email

1 Henry Zhu henry.zhu@gmail.com

2 EvanYOU Eevanyou@vuejs.org

3 Fabien POTENCIER fab.potencier@symfony.fr

Password

&

T

=z

SHOI0IO,

Close

Clicking on a row of the dataTable (instance) displays the objects associated to the instance (details action):

10.2. Description of the features

53

micro-framework Documentation, Release 2.0.9

Id Name

1 Henry Zhu

2 Evan’YOU

3 Fabien POTENCIER

GET:UsersController/index

Emiail

henry.zhu@gmail.com

evanyou@vuesjs.org

fab.potencier@symfony.fr

Password

-

20
« (
« (o

Q,
estimations (0) projects (1) participations (3)
Vuels Paris-h2
Wuels
Sudoku
Close
Using the search area:
Id Name Email Password
3 Fabien POTENCIER fab.potencier@symfony.fr i rd @
fab Q
10.2.2 Create (newModel action)
It is possible to create an instance by clicking on the add button
4+ Add a new models\User...
The default form for adding an instance of User:
54 Chapter 10. CRUD Controllers

micro-framework Documentation, Release 2.0.9

m models\User
* MNew object creation

Name
Email
Password

Participationslds

@ Validate (O Cancel

10.2.3 Update (update action)

The edit button on each row allows you to edit an instance

#

The default form for adding an instance of User:

10.2. Description of the features 55

micro-framework Documentation, Release 2.0.9

? models\User
E‘Editing an existing object

Name

EvanYOU

Email

evanyou@vuejs.org

Password

Participationslds

Paris-h2 % Vuels x Sudoku %

@ Validate O Cancel

10.2.4 Delete (delete action)

The delete button on each row allows you to edit an instance

®

Display of the confirmation message before deletion:

56

Chapter 10. CRUD Controllers

micro-framework Documentation, Release 2.0.9

Id MName Emiail Password
1 Henry Zhu henry.zhu@gmail.com e = @
2 Evan YOU Evanyou@vuejs.org e rd @
3 Fabien POTENCIER fab.potencier@symfony.fr = = @
Q
Remove confirmation x

Do you confirm the deletion of "evanyou@vuejs.org™?

10.3 Customization

Create again a CrudController from the admin interface:

Adding a CRUD controller

Name Model
controllers\ UsersController models\User -
— Create override Datas class —_— Create override ModelViewer class
— Create override Events class — Create override CRUDFiles class (URLs and files)
@framework/crud/index.html % @framework/crud/form.html % -

@framework/crud/display.html %

| Addroute..

Path

users

@ Validate O Cancel

It is now possible to customize the module using overriding.

10.3. Customization 57

micro-framework Documentation, Release 2.0.9

10.3.1 Overview

[

CrudEvents
v CRUDController
CrudCatas
ModelViewer
CrudFiles
‘ Templates ‘

10.3.2 Classes overriding

CRUDController methods to override

Method | Signification | Default return
routes

index() Default page : list all objects

edit($modal="no”, $ids=") Edits an instance

newModel($modal="no"") Creates a new instance

display($modal="no”,$ids="*) | Displays an instance

delete($ids) Deletes an instance

update() Displays the result of an instance updating
showDetail($ids) Displays associated members with foreign keys
refresh_() Refreshes the area corresponding to the DataTable (#lv)
refreshTable($id=null) //[TO COMMENT

58 Chapter 10. CRUD Controllers

micro-framework Documentation, Release 2.0.9

ModelViewer methods to override

ete’”’]

Method Signification Default
return
index route
getModelDataTable($instances, Creates the dataTable and Adds its behavior DataTable
$model,$totalCount,$page=1)
getDataTableln- Creates the dataTable DataTable
stance($instances,$model,$total Count,$page=1)
recordsPerPage($model,$totalCount=0) Returns the count of rows to display (if null there’s no | null or 6
pagination)
getGroupByFields() Returns an array of members on which to perform a | []
grouping
getDataTableRowButtons() Returns an array of buttons to display for each row | [“edit”,’dels
[“edit”,’delete”, display”]
onDataTableRowButton(HtmlButton $bt) | To override for modifying the dataTable row buttons
getCaptions($captions, $className) Returns the captions of the column headers all mem-
ber names
detail route
showDetailsOnDataTableClick() To override to make sure that the detail of a clicked ob- | true
ject is displayed or not
onDisplayFkElementListDe- To modify for displaying each element in a list compo-
tails($element,$member,$className,$objecthent of foreign objects
getFkHeaderElementDetails($member, Returns the header for a single foreign object (issue from | Html-
$className, $object) ManyToOne) Header
getFkElementDetails($member, $class- | Returns a component for displaying a single foreign ob- | HtmlLa-
Name, $object) ject (manyToOne relation) bel
getFkHeaderListDetails($member, Returns the header for a list of foreign objects (one- | Html-
$className, $list) ToMany or ManyToMany) Header
getFkListDetails($member, $className, | Returns a list component for displaying a collection of | HtmlList
$list) foreign objects (many)
edit and newModel routes
getForm($identifier, $instance) Returns the form for adding or modifying an object Html-
Form
getFormTitle($form,$instance) Returns an associative array defining form message title | Html-
with keys “icon”,’message”,’subMessage”’ Form
setFormFieldsComponent(DataForm Sets the components for each field
$form,$fieldTypes)
onGenerateFormField($field) For doing something when $field is generated in form
isModal($objects, $model) Condition to determine if the edit or add form is modal | count($obje
for $model objects
getFormCaptions($captions, $className, | Returns the captions for form fields all mem-
$instance) ber names
display route
getModelDataEle- Returns a DataElement object for displaying the instance | DataEle-
ment($instance,$model,$modal) ment
getElementCaptions($captions, $class- | Returns the captions for DataElement fields all mem-
Name, $instance) ber names
delete route
onConfirmButtons(HtmIButton $con- | To override for modifying delete confirmation buttons

firmBtn,HtmlButton $cancelBtn)

10.3. Customization

59

cts)>5

micro-framework Documentation, Release 2.0.9

CRUDDatas methods to override

Method | Signification | Default return
index route
_getInstancesFilter($model) Adds a condition for filtering the instances displayed | 1=1
in dataTable
getFieldNames($model) Returns the fields to display in the index action for | all member
$model names
getSearchFieldNames($model) Returns the fields to use in search queries all member
names
edit and newModel routes
getFormField- Returns the fields to update in the edit and newModel | all member
Names($model,$instance) actions for $model names
getManyToOne- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
getOneToMany- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
getManyToMany- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
display route
getElementFieldNames($model) Returns the fields to display in the display action for | all member
$model names
CRUDEvents methods to override
Method Signification Default
return
index route
onConfDeleteMessage(CRUDMessage Returns the confirmation message displayed before | CRUDMes-
$message,$instance) deleting an instance sage
onSuccessDeleteMessage(CRUDMessage | RReturns the message displayed after a deletion CRUDMes-
$message,$instance) sage
onErrorDeleteMessage(CRUDMessage Returns the message displayed when an error occurred | CRUDMes-
$message,$instance) when deleting sage
edit and newModel routes
onSuccessUpdateMes- Returns the message displayed when an instance is | CRUDMes-
sage(CRUDMessage $message) added or inserted sage
onErrorUpdateMessage(CRUDMessage Returns the message displayed when an error occurred | CRUDMes-
$message) when updating or inserting sage
all routes
onNotFoundMessage(CRUDMessage Returns the message displayed when an instance does
$message,$ids) not exists
onDisplayEle- Triggered after displaying objects in dataTable
ments($dataTable,$objects,$refresh)

60

Chapter 10. CRUD Controllers

micro-framework Documentation, Release 2.0.9

CRUDFiles methods to override

html

Method | Signification | Default return

template files

getViewBaseTem- | Returns the base template for all Crud actions if getBaseTemplate | @frame-

plate() return a base template filename work/crud/baseTemplate.}

getViewIndex() Returns the template for the index route @frame-
work/crud/index.html

getViewForm() Returns the template for the edit and newInstance routes @frame-
work/crud/form.html

getViewDisplay() | Returns the template for the display route @frame-
work/crud/display.html

Urls

getRouteRe- Returns the route for refreshing the index route /refresh_

fresh()

getRouteDetails() | Returns the route for the detail route, when the user click on a /showDetail

dataTable row

getRouteDelete() | Returns the route for deleting an instance /delete

getRouteEdit() Returns the route for editing an instance Jedit

getRouteDis- Returns the route for displaying an instance /display

play(Q)

getRouteRe- Returns the route for refreshing the dataTable /refreshTable

freshTable()

getDetailClick- Returns the route associated with a foreign key instance in list «

URL($model)

10.3.3 Twig Templates structure

#fm-add-update #dataTable
frm
dataTable

\

|

I

\ \

\

\ \
| |

index.html

[
L

P T Addanew models\User...

btAddNew -
#btAddNew Id

1

2

Email Password

Name

Henry Zhu henry.zhu@gmail.com

EvanYOU evanyou@vuejs.org

Fabien POTENCIER fab.potencier@symfony.fr

messages - ‘

#table-messages

#table-details

form.html

Displayed in frm block

10.3. Customization 61

micro-framework Documentation, Release 2.0.9

L
L

o

? models\User
G’Edit'\ng an existing ohject

Name

Henry Zhu

Email

henry.zhu@gmail.com

Password

Participationslds

.
L

-
-
o

Paris-h2 %

VuelS x

Sudoku %

ScrumPoker %

@ Validate O Cancel

#action-modal-frmEdit-0

display.htmi

Displayed in frm block

btClose

=+ Add anew models\User...

- r

%X Close I A Delete evan.you@vuejs.org... [# Editevanyou@vuejs.org...
buttons -
#puttans d 2
biClose Name EvanYOU
«_dlose
Email evanyou@vuejs.org
Password evan
J Estimations
Paris-h2
Participations VuelS
Sudoku
Projects Vuels
~—
e

J

62

Chapter 10. CRUD Controllers

cHAPTER 11

Auth Controllers

The Auth controllers allow you to perform basic authentification with:
¢ login with an account
* account creation
* logout

* controllers with required authentication

11.1 Creation

In the admin interface (web-tools), activate the Controllers part, and choose create Auth controller:
= Create special controller

Then fill in the form:

¢ Enter the controller name (BaseAuthController in this case)

Adding an Auth controller

Name Base class

controllers\ BaseAuthController Ubiguity\controllers\authtAuthController -

Create override AuthFiles class

Add route...

© Validate O Cancel

The generated controller:

63

24

25

26

27

28

29

micro-framework Documentation, Release 2.0.9

Listing 1: app/controllers/Base AuthController.php

//TODO
//Forwarding to the default controller/action

//TODO

//Loading from the database the user corresponding to the

—parameters
//Checking user creditentials
//Returning the user

11.2 Implementation of the authentification

Example of implementation with the administration interface : We will add an authentication check on the admin

interface.

Authentication is based on verification of the email/password pair of a model User:

64 Chapter 11. Auth Controllers

micro-framework Documentation, Release 2.0.9

User

-«pke id:int{11)
-name:varchar(45)
-email: varchar({255)

- password:varchar(45)

-estimations : mixed
-participations : mixed

-projects :mixed

11.2.1 BaseAuthController modification

Listing 2: app/controllers/Base AuthController.php

(continues on next page)

11.2. Implementation of the authentification

[Y S

micro-framework Documentation, Release 2.0.9

(continued from previous page)

11.2.2 Admin controller modification
Modity the Admin Controller to use BaseAuthController:

Listing 3: app/controllers/Admin.php

Test the administration interface at /admin:

Forbidden access
You are not authorized to access the page Admin !

%] Login

After clicking on login:

Connection
Email * Password
myaddressmail@gmail.com I

Remember me

| Connection ‘

If the authentication data entered is invalid:
Connection problem
Invalid creditentials!

%] Login

66

Chapter 11. Auth Controllers

R - NV R S PO SR

micro-framework Documentation, Release 2.0.9

If the authentication data entered is valid:

'/h‘ UbiquityMyAdmin models routes controllers cache rest config git sen logs

myaddressmail @gmail.com Logout

m UbiquityMyAdmin

Ubiquity framework administration web-tools

- Models = Rest
[=]

Used to perform CRUD operations on data. Restfull web service

11.2.3 Attaching the zone info-user
Modify the BaseAuthController controller:

Listing 4: app/controllers/Base AuthController.php

The _userInfo area is now present on every page of the administration:

myaddressmail@gmail.com = Logout

It can be displayed in any twig template:

{{ \ H}

11.3 Description of the features

11.3.1 Customizing templates

index.html template

The index.html template manages the connection:

11.3. Description of the features 67

micro-framework Documentation, Release 2.0.9

_fieldLogin

_before

{{logininputNamej}

_fieldPassword

{{passwordinputName}}

{{passwordLabel}l}

{{loginLabel}l}
{{action}}
Connection
Email * Password ~
myaddressmail@gmail.com ssssses
Remember me
o
_buttons
e _fieldRemember
#ck-remember
{irememberCaption}}
Example with the _userInfo aera:
Create a new AuthController named PersoAuthController:
Adding an Auth controller
Name Base class
controllers\ PersoAuthController controllers\BaseAuthController -
—_— Create override AuthFiles class

@framework/auth/info.html %

Add route...

@ Validate O Cancel

Edit the template app/views/PersoAuthController/info.html

Listing 5: app/views/PersoAuthController/info.html

{% 5}
{% 5}
<div class="ui tertiary inverted red segment">
{% %}
{% s}
{{ 0 1}
{% %}
{% 5}
{{ 0 1}
{% %}
{% 5}
{{ 0 1}
{% %}
{% 5}
{{ 0 1}
{% %}
{% 5}
{{ 0 1}
(continues on next page)
68 Chapter 11. Auth Controllers

20
21

22

[Y S O

micro-framework Documentation, Release 2.0.9

(continued from previous page)

{% %}

{% %}
</div>

{% %}

Change the AuthController Admin controller:

Listing 6: app/controllers/Admin.php

ﬁ UbiquityMyAdmin models routes controllers cache rest config git

SE0

logs

myaddressmail@gmail.com & Logout

o: UbiquityMyAdmin

Ubiquity framework administration web-tools

Models mn Rest
=]

—]
Used to perform CRUD operations on data. Restfull web service

11.3.2 Customizing messages

Listing 7: app/controllers/PersoAuthController.php

11.3.3 Self-check connection

11.3. Description of the features

69

micro-framework Documentation, Release 2.0.9

Listing 8: app/controllers/PersoAuthController.php

11.3.4 Limitation of connection attempts

Listing 9: app/controllers/PersoAuthController.php

70 Chapter 11. Auth Controllers

cHAPTER 12

Models generation

12.1 From existing database

¢ with console

¢ with web-tools

71

micro-framework Documentation, Release 2.0.9

72 Chapter 12. Models generation

cHAPTER 13

ORM

Note: if you want to automatically generate the models, consult the generating models part.

A model class is just a plain old php object without inheritance. Models are located by default in the app\models
folder. Object Relational Mapping (ORM) relies on member annotations in the model class.

13.1 Models definition

13.1.1 A basic model

* A model must define its primary key using the @id annotation on the members concerned
¢ Serialized members must have getters and setters
* Without any other annotation, a class corresponds to a table with the same name in the database, each member

corresponds to a field of this table

Listing 1: app/models/User.php

(continues on next page)

73

micro-framework Documentation, Release 2.0.9

(continued from previous page)

13.1.2 Mapping

Table->Class

If the name of the table is different from the name of the class, the annotation @table allows to specify the name of
the table.

Listing 2: app/models/User.php

Field->Member

If the name of a field is different from the name of a member in the class, the annotation @column allows to specify
a different field name.

Listing 3: app/models/User.php

(continues on next page)

74 Chapter 13. ORM

micro-framework Documentation, Release 2.0.9

(continued from previous page)

13.1.3 Associations

Note: Naming convention Foreign key field names consist of the primary key name of the referenced table followed
by the name of the referenced table whose first letter is capitalized. Example idUser for the table user whose

primary key is id

ManyToOne

A user belongs to an organization:

User
- «id» id

Organization

- firstname
- lastname

>

- «id» id
- hame
- address

Listing 4: app/models/User.php

(continues on next page)

13.1. Models definition

75

micro-framework Documentation, Release 2.0.9

(continued from previous page)

The @joinColumn annotation specifies that:

* The member $organization is an instance of modelsOrganization

* The table user has a foreign key idOrganization refering to organization primary key

* This foreign key is not null => a user will always have an organization

OneToMany

An organization has many users:

User Organization
- «id» id - - «id» id
- firstname 0..* - hame
- lasthame - address

Listing 5: app/models/Organization.php

In this case, the association is bi-directional. The @oneToMany annotation must just specify:

* The class of each user in users array : modelsUser

* the value of @mappedBy is the name of the association-mapping attribute on the owning side : $organization

in User class

76

Chapter 13. ORM

micro-framework Documentation, Release 2.0.9

ManyToMany

* A user can belong to groups.

* A group consists of multiple users.

User
- «id» id

Group

- firstname
- lastname

- «id» id
- name

Listing 6: app/models/User.php

Listing 7: app/models/Group.php

If the naming conventions are not respected for foreign keys, it is possible to specify the related fields.

13.1. Models definition

77

micro-framework Documentation, Release 2.0.9

Listing 8: app/models/Group.php

13.2 ORM Annotations

13.2.1 Annotations for classes

@annotation | role

| properties | role

@table Defines the associated table name.

13.2.2 Annotations for members

@annotation | role | properties | role

@id Defines the primary key(s).

@column Specify the associated field caracteristics. | name Name of the associated field
nullable true if value can be null
dbType Type of the field in database

@transient Specify that the field is not persistent.

78

Chapter 13. ORM

micro-framework Documentation, Release 2.0.9

13.2.3 Associations

@annotation | role properties role
(extends) [optional]
@manyToOne | Defines a single-valued association to another entity class.
@joinColumn | Indicates the foreign key in many- className Class of the member
(@column) ToOne asso. [referenced- Name of the associated column
Column-
Name]
@oneToMany | Defines a multi-valued association to | className Class of the objects in member
another entity class. [mappedBy] Name of the association-mapping at-
tribute on the owning side
@manyToMany| Defines a many-valued association targetEntity Class of the objects in member
with many-to-many multiplicity [inversedBy] Name of the association-member on
the inverse-side
[mappedBy] Name of the association-member on
the owning side
@joinTable Defines the association table for name The name of the association table
many-to-many multiplicity [joinColumns] | @column => name and referenced-
ColumnName for this side
[inverseJoin- @column => name and referenced-
Columns] ColumnName for the other side

13.2. ORM Annotations

79

micro-framework Documentation, Release 2.0.9

80 Chapter 13. ORM

cHAPTER 14

DAO

The DAO class is responsible for loading and persistence operations on models :

14.1 Loading data

14.1.1 Loading an instance

Loading an instance of the models\User class with id 5

BelongsTo loading

By default, members defined by a belongsTo relationship are automatically loaded

Each user belongs to only one category:

It is possible to prevent this default loading ; the third parameter allows the loading or not of belongsTo members:

> // NULL

HasMany loading

Loading hasMany members must always be explicit ; the third parameter allows the explicit loading of members.

81

micro-framework Documentation, Release 2.0.9

Each user has many groups:

Composite primary key

Either the ProductDetail model corresponding to a product ordered on a command and whose primary key is compos-
ite:

Listing 1: app/models/Products.php

The second parameter $keyValues can be an array if the primary key is composite:

14.1.2 Loading multiple objects

Loading instances of the User class:

Loading instances of the User class with his category and his groups :

(continues on next page)

82 Chapter 14. DAO

micro-framework Documentation, Release 2.0.9

(continued from previous page)

14.1. Loading data 83

micro-framework Documentation, Release 2.0.9

84 Chapter 14. DAO

cHAPTER 15

Request

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The URequest class provides additional functionality to more easily manipulate native $_POST and $_GET php
arrays.

15.1 Retrieving data

15.1.1 From the get method

The get method returns the null value if the key name does not exist in the get variables.

The get method can be called with the optional second parameter returning a value if the key does not exist in the get
variables.

15.1.2 From the post method

The post method returns the null value if the key name does not exist in the post variables.

85

micro-framework Documentation, Release 2.0.9

The post method can be called with the optional second parameter returning a value if the key does not exist in the
post variables.

[e \

The getPost method applies a callback to the elements of the $_POST array and return them (default callback :
htmlEntities) :

I e \

15.2 Retrieving and assigning multiple data

It is common to assign the values of an associative array to the members of an object. This is the case for example
when validating an object modification form.

The setValuesToObject method performs this operation :

Consider a User class:

Consider a form to modify a user:

form = =

input = = =
label = Firstname: label
input = = = =
label = Lastname: label
input = = = =
input = =

form

86 Chapter 15. Request

micro-framework Documentation, Release 2.0.9

The update action of the Users controller must update the user instance from POST values. Using the setPostVal-
uesToObject method avoids the assignment of variables posted one by one to the members of the object. It is also
possible to use setGetValuesToObject for the get method, or setValuesToObject to assign the values of any associa-

tive array to an object.

Listing 1: app/controllers/Users.php

Note: SetValuesToObject methods use setters to modify the members of an object. The class concerned must
therefore implement setters for all modifiable members.

15.3 Testing the request

15.3.1 isPost

The isPost method returns true if the request was submitted via the POST method: In the case below, the initialize
method only loads the vHeader.html view if the request is not an Ajax request.

Listing 2: app/controllers/Users.php

15.3.2 isAjax

The isAjax method returns true if the query is an Ajax query:

15.3. Testing the request 87

R I S T

micro-framework Documentation, Release 2.0.9

Listing 3: app/controllers/Users.php

15.3.3 isCrossSite

The isCrossSite method verifies that the query is not cross-site.

88

Chapter 15. Request

cHAPTER 16

Response

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The UResponse class provides additional functionality to more easily manipulate response headers.

89

micro-framework Documentation, Release 2.0.9

90 Chapter 16. Response

cHAPTER 17

Session

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The USession class provides additional functionality to more easily manipulate native $_SESSION php array.

17.1 Starting the session

The Http session is started automatically if the sessionName key is populated in the app/config.php configuration
file:

<?

If the sessionName key is not populated, it is necessary to start the session explicitly to use it:

Note: The name parameter is optional but recommended to avoid conflicting variables.

91

micro-framework Documentation, Release 2.0.9

17.2 Creating or editing a session variable

17.3 Retrieving data

The get method returns the null value if the key name does not exist in the session variables.

The get method can be called with the optional second parameter returning a value if the key does not exist in the
session variables.

Note: The session method is an alias of the get method.

The getAll method returns all session vars:

’ -

17.4 Testing

The exists method tests the existence of a variable in session.

//do something when name key exists in session

The isStarted method checks the session start

//do something if the session is started

17.5 Deleting variables

The delete method remove a session variable:

92 Chapter 17. Session

micro-framework Documentation, Release 2.0.9

17.6 Explicit closing of the session

The terminate method closes the session correctly and deletes all session variables created:

|

17.6. Explicit closing of the session 93

micro-framework Documentation, Release 2.0.9

94 Chapter 17. Session

cHAPTER 18

Cookie

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The UCookie class provides additional functionality to more easily manipulate native $_ COOKIES php array.

95

micro-framework Documentation, Release 2.0.9

96 Chapter 18. Cookie

L T = Y S e

w0 =

cHAPTER 19

Views

Ubiquity uses Twig as the default template engine (see Twig documentation). The views are located in the app/views
folder. They must have the .html extension for being interpreted by Twig.

19.1 Loading

Views are loaded from controllers:

Listing 1: app/controllers/Users.php

19.2 Loading and passing variables

Variables are passed to the view with an associative array. Each key creates a variable of the same name in the view.

Listing 2: app/controllers/Users.php

(continues on next page)

97

https://twig.symfony.com/doc/2.x/

R L v R

micro-framework Documentation, Release 2.0.9

(continued from previous page)

In this case, it is usefull to call Compact for creating an array containing variables and their values :

Listing 3: app/controllers/Users.php

19.3 Displaying in view
The view can then display the variables:

Listing 4: users/display.html

h2 {{type}} h2
div {{message}} div

Variables may have attributes or elements you can access, too.

You can use a dot (.) to access attributes of a variable (methods or properties of a PHP object, or items of a PHP array),
or the so-called “subscript” syntax ([]):

{{ . }}
{{ [1 1}

98 Chapter 19. Views

cHAPTER 20

Normalizers

99

micro-framework Documentation, Release 2.0.9

100 Chapter 20. Normalizers

CHAPTER 2 1

Validators

101

micro-framework Documentation, Release 2.0.9

102 Chapter 21. Validators

CHAPTER 22

Translation module

//ITODO
See also:

TranslatorManager

103

micro-framework Documentation, Release 2.0.9

104 Chapter 22. Translation module

CHAPTER 23

Rest

/[TODO

105

micro-framework Documentation, Release 2.0.9

106 Chapter 23. Rest

CHAPTER 24

External libraries

107

micro-framework Documentation, Release 2.0.9

108 Chapter 24. External libraries

CHAPTER 25

Ubiquity Caching

109

micro-framework Documentation, Release 2.0.9

110 Chapter 25. Ubiquity Caching

CHAPTER 20

Ubiquity dependencies

111

micro-framework Documentation, Release 2.0.9

112 Chapter 26. Ubiquity dependencies

CHAPTER 27

Indices and tables

* genindex
* modindex

e search

113

	Quick start with console
	Quick start with web tools
	Ubiquity-devtools installation
	Project creation
	Project configuration
	Devtools usage
	URLs
	Router
	Controllers
	CRUD Controllers
	Auth Controllers
	Models generation
	ORM
	DAO
	Request
	Response
	Session
	Cookie
	Views
	Normalizers
	Validators
	Translation module
	Rest
	External libraries
	Ubiquity Caching
	Ubiquity dependencies
	Indices and tables

