ubiquity-framework Documentation
Release 2.0.9

phpmv

Jun 06, 2020

Quick-starts

10

11

12

13

14

15

16

17

18

19

20

Quick start with console
Quick start with web tools

Ubiquity-devtools installation

Project creation
Project configuration
Devtools usage

URLs

Router

Controllers

Events

Dependency injection
CRUD Controllers
Auth Controllers
Database

Models generation
ORM

DAO

Request

Response

Session

19

21

23

27

31

35

45

53

57

63

75

83

87

89

97

105

109

113

21

22

23

24

Cookie

Views

Assets

Themes

25 jQuery Semantic-UI

26

27

28

29

30

31

32

33

34

35

36

37

38

Normalizers
Validators
Transformers
Translation module
Rest

Webtools
Contributing
Coding guide
Documenting guide
External libraries
Ubiquity Caching
Ubiquity dependencies

Indices and tables

117

119

123

125

133

143

145

151

157

161

187

193

195

201

203

205

207

209

CHAPTER 1

Quick start with console

Note: If you do not like console mode, you can switch to quick-start with web tools (UbiquityMyAdmin).

1.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

1.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Test your recent installation by doing:

’Ubiquity version

You can get at all times help with a command by typing: Ubiquity help followed by what you are looking for.

Example :

Ubiquity help project

http://getcomposer.org/

ubiquity-framework Documentation, Release 2.0.9

1.3 Project creation

Create the quick-start projet

’Ubiquity new quick-start

1.4 Directory structure

The project created in the quick-start folder has a simple and readable structure:

the app folder contains the code of your future application:

app
cache
config
controllers
models

views

1.5 Start-up

Go to the newly created folder quick-start and start the build-in php server:

’Ubiquity serve

Check the correct operation at the address http://127.0.0.1:8090:

2 Chapter 1. Quick start with console

ubiquity-framework Documentation, Release 2.0.9

. quick-start X
<%

& & @ 127.0.0.1:8090 w N @ =

Welcome to Ubiquity

Version 2.0.9

Sernantic-Ul Button

It works !

Page informations

* Controller : controllers\Main
o & Action:index
s Route: default

& Path:_default/

s Template:

Ubiquity website Guide Doc API GitHub UbiquityMyAdmin

Note: If port 8090 is busy, you can start the server on another port using -p option.

’Ubiquity serve -p 8095

1.6 Controller

The console application dev-tools saves time in repetitive operations. We go through it to create a controller.

’Ubiquity controller DefaultController

/html/quick-start

- Creation of the Controller DefaultController at the location app/controllers/DefaultController.php

We can then edit app/controllers/DefaultController file in our favorite IDE:

Listing 1: app/controllers/DefaultController.php

namespace

(continues on next page)

1.6. Controller 3

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

class DefaultController extends
public function index

Add the traditional message, and test your page at http://127.0.0.1:8090/DefaultController

Listing 2: app/controllers/DefaultController.php

class DefaultController extends

public function index
echo

For now, we have not defined routes, Access to the application is thus made according to the following scheme:
controllerName/actionName/param

The default action is the index method, we do not need to specify it in the url.

1.7 Route

Important: The routing is defined with the annotation @route and is not done in a configuration file: it’s a design
choice.

The automated parameter set to true allows the methods of our class to be defined as sub routes of the main route
/hello.

Listing 3: app/controllers/DefaultController.php

namespace

class DefaultController extends

public function index
echo

1.7.1 Router cache

Important: No changes on the routes are effective without initializing the cache. Annotations are never read at
runtime. This is also a design choice.

4 Chapter 1. Quick start with console

ubiquity-framework Documentation, Release 2.0.9

‘We can use the console for the cache re-initialization:

Ubiquity init-cache

cache directory is /var/www/html/quick-start/app/cache/
Models directory is /var/wwe/html/quick-start/app/models
Models cache reset

Controllers directory is /var/www/html/quick-start/app/controllers
Router cache reset

Controllers directory is /var/www/html/quick-start/app/controllers
Rest cache reset

Let’s check that the route exists:

’Ubiquity info:routes

shellos({index/)? controllershDefaultController

We can now test the page at http://127.0.0.1:8090/hello

1.8 Action & route with parameters

We will now create an action (sayHello) with a parameter (name), and the associated route (to): The route will use the
parameter name of the action:

’Ubiquity action DefaultController.sayHello -p name -r to/ name /

You need to re-init Router cache to apply this update with init-cache command

The action sayHelle is created in controller controllersi\DefaultController

After re-initializing the cache (init-cache command), the info:routes command should display:

Jhello/({index/)? controllershDefaultController index

fhellosto/(.+2)/ sayHello [mame*]

Change the code in your IDE: the action must say Hello to somebody. . .

1.8. Action & route with parameters 5

ubiquity-framework Documentation, Release 2.0.9

Listing 4: app/controllers/DefaultController.php

sayHello

and test the page at http://127.0.0.1:8090/hello/to/Mr SMITH

1.9 Action, route parameters & view

We will now create an action (information) with two parameters (title and message), the associated route (info), and a
view to display the message: The route will use the two parameters of the action.

Ubiquity action DefaultController.information -p title,message -r info/
— title / message -v

Note: The -v (—view) parameter is used to create the view associated with the action.

After re-initializing the cache, we now have 3 routes:

fhello/(index/)7 controllerssDefaultController index

fhellostos/(.+?)/ sayHello [name*]

fhello/sinfos/ (. +?2)/(."?) information [title*,message]

Let’s go back to our development environment and see the generated code:

Listing 5: app/controllers/DefaultController.php

information

We need to pass the 2 variables to the view:

information

(continues on next page)

6 Chapter 1. Quick start with console

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

compact

And we use our 2 variables in the associated twig view:

Listing 6: app/views/DefaultController/information.html

hl {{title}} hil
div {{message | raw}} div

We can test your page athttp://127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet
simple It’s obvious

(® 127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet simple

Quick start

Ukiquity is quiet simple

1.9. Action, route parameters & view 7

ubiquity-framework Documentation, Release 2.0.9

8 Chapter 1. Quick start with console

CHAPTER 2

Quick start with web tools

2.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

2.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Test your recent installation by doing:

’Ubiquity version

You can get at all times help with a command by typing: Ubiquity help followed by what you are looking for.

Example :

’Ubiquity help project

2.3 Project creation

Create the quick-start projet with UbiquityMyAdmin interface (the -a option)

http://getcomposer.org/

ubiquity-framework Documentation, Release 2.0.9

’Ubiquity new quick-start -a

2.4 Directory structure

The project created in the quick-start folder has a simple and readable structure:

the app folder contains the code of your future application:

app
cache
config
controllers
models
views

2.5 Start-up

Go to the newly created folder quick-start and start the build-in php server:

’Ubiquity serve

Check the correct operation at the address http://127.0.0.1:8090:

- quick-start
e

Version 2.0.9

Sermantic-Ul Button

It works !

Ubiquity website

¢ @ 127.0.0.1:8090 o In @O =

Welcome to Ubiquity

Page informations
+ Controller : controllers\Main

o s Action:index

+ Route: _default
e Path:_default/

+ Template:

Guide

Doc APl GitHub UbiquityMyAdmin

10

Chapter 2. Quick start with web tools

ubiquity-framework Documentation, Release 2.0.9

Note: If port 8090 is busy, you can start the server on another port using -p option.

Ubiquity serve -p 8095

2.6 Controller

Goto admin interface by clicking on the button UbiquityMyAdmin:
UbiguityMyAdmin

The web application UbiquityMyAdmin saves time in repetitive operations.

ﬁ UbiquityMyAdmin models routes controllers cache rest config git 520 logs translate

¢g UbiquityMyAdmin

Ubigquity framework administration web-tools

' Models a: Config

Used to perform CRUD operations on data. Configuration variables
& Routes O Git
Displays defined routes with annotations Git versioning
o Controllers Seo
v G
Displays controllers and actions Search Engine Optimization
* Cache i-E Logs
Annotations, models, router and controller cache Log files
= Rest Translate
—] A |]
Restfull web service Translation module

We go through it to create a controller.

Go to the controllers part, enter DefaultController in the controllerName field and create the controller:

View DefaultControl IerI + Create controller

The controller DefaultController is created:

2.6. Controller 11

ubiquity-framework Documentation, Release 2.0.9

V The DefaultController controller has been created in C:\xampp\htdocs\quick-start-2\.ubiquity\.\app\controllers\DefaultController.php.

View + Create controller + Create special controller Y Filter controllers

Default

Controller Action [routes]
values

2 controllers\DefaultController + ¥ index()

¥ index() & [default/ 1 @framework/index/semantichtml
+

L4 controllersiindexController

We can then edit app/controllers/DefaultController file in our favorite IDE:

Listing 1: app/controllers/DefaultController.php

namespace

class DefaultController extends
public function index

Add the traditional message, and test your page at http://127.0.0.1:8090/DefaultController

Listing 2: app/controllers/DefaultController.php

class DefaultController extends

public function index
echo

For now, we have not defined routes, Access to the application is thus made according to the following scheme:
controllerName/actionName/param

The default action is the index method, we do not need to specify it in the url.

2.7 Route

Important: The routing is defined with the annotation @route and is not done in a configuration file: it’s a design
choice.

The automated parameter set to true allows the methods of our class to be defined as sub routes of the main route
/hello.

Listing 3: app/controllers/DefaultController.php

namespace

(continues on next page)

12 Chapter 2. Quick start with web tools

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

class DefaultController extends

public function index
echo 'Hello world!'

2.7.1 Router cache

Important: No changes on the routes are effective without initializing the cache. Annotations are never read at
runtime. This is also a design choice.

‘We can use the web tools for the cache re-initialization:

Go to the Routes section and click on the re-init cache button

£ (Re-)Init router cache

The route now appears in the interface:

= Routes

Displays defined routes with annotations

o Router cache entry is /var/www/html/quick-start/ubiquity/./app/cache/controllers/routes.default.cache.php

= (Re-)Init router cache http://127.0.0.1:8090 Q

Path Methods Action & parameters Cache Expired Name
% controllers\DefaultController::class

& /hello/(index/)? index () DefaultController-index

We can now test the page by clicking on the GET button or by going to the address http://127.0.0.1:8090/
hello

2.8 Action & route with parameters

We will now create an action (sayHello) with a parameter (name), and the associated route (to): The route will use the
parameter name of the action:

Go to the Controllers section:
¢ click on the + button associated with DefaultController,

¢ then select Add new action in.. item.

2.8. Action & route with parameters 13

ubiquity-framework Documentation, Release 2.0.9

Controller
- controllers\DefaultController =+

Add new action in controllers\DefaultController...

Enter the action information in the following form:

Creating a new action in controller

Controller

controllers\DefaultController -

Action & parameters

sayHello name

Implementation

echo 'Hello ".$name.'!";

Create associated view

' Addroute..

to/fname}/ - o

Validate Close

After re-initializing the cache with the orange button, we can see the new route hello/to/{name}:

Default
Controller Action [routes] au
values
¥ index() & /hello/lindexs)?

> controllers\DefaultController +

¥ sayHello(name) & /hellofto/(+2)f

Check the route creation by going to the Routes section:

14 Chapter 2. Quick start with web tools

ubiquity-framework Documentation, Release 2.0.9

Path Methods Action & parameters Cache Expired Name
% controllers\DefaultController::class

& /hellof(index/)? index () DefaultController-indesx

& /helloftol(.+2)/ sayHello (name*) DefaultController-sayHello GET
We can now test the page by clicking on the GET button:

GET:/hello/to/(.+?)/

Required URL parameters
You must complete the following parameters before continuing navigation testing

+
Name

Mr SMITH

Validate

‘We can see the result:

GET:/hello/to/(.+?)/

Hello Mr SMITH!

We could directly goto http://127.0.0.1:8090/hello/to/Mr SMITH address to test

2.9 Action, route parameters & view

POST -

Close

Close

We will now create an action (information) with tow parameters (title and message), the associated route (info), and a

view to display the message: The route will use the two parameters of the action.

In the Controllers section, create another action on DefaultController:

Controller
v controllers\DefaultController +

Add new action in controllers\DefaultController...

Enter the action information in the following form:

2.9. Action, route parameters & view

15

ubiquity-framework Documentation, Release 2.0.9

Creating a new action in controller

Controller

controllers\DefaultController -

Action & parameters
information title,message="nothing’

Implementation

¥ Create associated view

« Addroute..

info/{title}imessage}/ -

A

Validate Close

Note: The view checkbox is used to create the view associated with the action.

After re-initializing the cache, we now have 3 routes:

Controller Action [routes] Default values

¥ index() ® /hello/(index/)?

¥ sayHello (name) & /hellofto/(+2)/
L3 controllers\DefaultController +

¥ information (title, message}) & /hello/info/(+2)/("7)

message="nothing"
B DefaultController/information.html

Let’s go back to our development environment and see the generated code:

Listing 4: app/controllers/DefaultController.php

public function information

We need to pass the 2 variables to the view:

16 Chapter 2. Quick start with web tools

ubiquity-framework Documentation, Release 2.0.9

public function information
compact

And we use our 2 variables in the associated twig view:

Listing 5: app/views/DefaultController/information.html

hl {{title}} hl
div {{message | raw}} div

We can test our page at http://127.0.0.1:8090/hello/info/Quick start/Ubiquity is quiet
simple It’s obvious

(1 127.0.0.1

Quick start

Ubiquity is quiet simple

New in documentation

* Mailer module

* Servers configuration
* Database connexions
¢ Optimization

* Rich client

* REST module

e Data transformers

* Dependency injection
* Events

» Views and themes

o Contributing

* Quick start with webtools (UbiquityMyAdmin)
* Generating models:

— with webtools (UbiquityMyAdmin)

— with console (devtools)

2.9. Action, route parameters & view 17

ubiquity-framework Documentation, Release 2.0.9

18 Chapter 2. Quick start with web tools

CHAPTER 3

Ubiquity-devtools installation

3.1 Install Composer

ubiquity utilizes Composer to manage its dependencies. So, before using, you will need to make sure you have
Composer installed on your machine.

3.2 Install Ubiquity-devtools

Download the Ubiquity-devtools installer using Composer.

composer global require phpmv/ubiquity-devtools

Make sure to place the ~/ . composer/vendor/bin directory in your PATH so the Ubiquity executable can be
located by your system.

Once installed, the simple Ubiquity new command will create a fresh Ubiquity installation in the directory you
specify. For instance, Ubiquity new blog would create a directory named blog containing an Ubiquity project:

Ubiquity new blog

The semantic option adds Semantic-UI for the front end.

You can see more options about installation by reading the Project creation section.

19

http://getcomposer.org/

ubiquity-framework Documentation, Release 2.0.9

20 Chapter 3. Ubiquity-devtools installation

CHAPTER 4

Project creation

After installing Ubiquity-devtools installation, in your terminal, call the new command in the root folder of your web
server :

4.1 Samples

A simple project

’Ubiquity new projectName

A project with UbiquityMyAdmin interface

’Ubiquity new projectName -a

A project with bootstrap and semantic-ui themes installed

’Ubiquity new projectName --themes bootstrap, semantic

21

ubiquity-framework Documentation, Release 2.0.9

4.2 Installer arguments

short name role default Allowed values Since dev-
name tools
b dbName | Sets the database name.
S server- Defines the db server ad- | 127.0.0.1
Name dress.
p port Defines the db server | 3306
port.
u user Defines the db server | root
user.
w pass- Defines the db server |
word password.
h themes Install themes. seman-
tic,bootstrap,foundation
m all- Creates all models from | false
models db.
a admin Adds UbiquityMyAdmin | false
interface.
i siteUrl Defines the site URL. http://127.0.0.1/{projectname} 1.2.6
e rewrite- | Sets the base for rewrit- | /{projectnamej}/ 1.2.6
Base ing.

4.3 Arguments usage

4.3.1 short names

Example of creation of the blog project, connected to the blogDb database, with generation of all models

Ubiquity new blog -b blogDb -m true

4.3.2 long names

Example of creation of the blog project, connected to the bogDb database, with generation of all models and integra-
tion of semantic theme

’Ubiquity new blog —--dbName blogDb --all-models true --themes semantic

4.4 Running

To start the embedded web server and test your pages, run from the application root folder:

’Ubiquity serve

The web server is started at 127.0.0.1:8090

22 Chapter 4. Project creation

CHAPTER B

Project configuration

Normally, the installer limits the modifications to be performed in the configuration files and your application is
operational after installation

Menu B3 test-website X +

C B8 © |127.0.0./test-website/

Welcome to Ubiquity

Version 2.0.0-beta.1

Semantic-Ul Button

ltworks !
Page informations

* Controller : controllers\Main
o ¢ Action:index
* Route:_default

¢ Path:_default/

* Template : app/view/index.html

Ubiquity website Guide Doc APl GitHub UbiquityMyAdmin

127.0.0.1 kobject-websita/Admin

23

I L N v

ubiquity-framework Documentation, Release 2.0.9

5.1 Main configuration

The main configuration of a project is localised in the app/conf/config.php file.

Listing 1: app/conf/config.php

return array

array false
false
false

5.2 Services configuration

Services loaded on startup are configured in the app/conf/services.php file.

Listing 2: app/conf/services.php

use

try

catch

5.3 Pretty URLs

5.3.1 Apache

The framework ships with an .htaccess file that is used to allow URLs without index.php. If you use Apache to serve
your Ubiquity application, be sure to enable the mod_rewrite module.

24

Chapter 5. Project configuration

ubiquity-framework Documentation, Release 2.0.9

Listing 3: .htaccess

AddDefaultCharset UTF-8

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /blog/

RewriteCond % REQUEST_FILENAME I-f

RewriteCond % HTTP_ACCEPT ! .ximages.x*

RewriteRule " .x $ index.php?c L,QSA
</IfModule>

See Apache configuration for more.

5.3.2 Nginx

On Nginx, the following directive in your site configuration will allow “pretty” URLs:

B

See NginX configuration for more.

5.3.3 Laravel Valet Driver
Valet is a php development environment for Mac minimalists. No Vagrant, no /etc/hosts file. You can even
share your sites publicly using local tunnels.

Laravel Valet configures your Mac to always run Nginx in the background when your machine starts. Then, using
DnsMasq, Valet proxies all requests on the » . test domain to point to sites installed on your local machine.

Get more info about Laravel Valet

Create UbiquityValetDriver.php under ~/.config/valet/Drivers/ add below php code and save it.

class UbiquityValetDriver extends

public function serves
if(is_dir
return true

return false

public function isStaticFile

(continues on next page)

5.3. Pretty URLs 25

https://laravel.com/docs/5.8/valet

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

is_file

frontControllerPath

ltrim

file exists

26

Chapter 5. Project configuration

CHAPTER O

Devtools usage

6.1 Project creation

See Project creation to create a project.

Tip: For all other commands, you must be in your project folder or one of its subfolders.

Important: The .ubiquity folder created automatically with the project allows the devtools to find the root folder
of the project. If it has been deleted or is no longer present, you must recreate this empty folder.

6.2 Controller creation

6.2.1 Specifications

e command : controller

e Argument: controller—-name

e aliases : create—controller

6.2.2 Parameters

short name

name

role

default

Allowed values

v

view

Creates the associated view index.

true

true, false

27

ubiquity-framework Documentation, Release 2.0.9

6.2.3 Samples:

Creates the controller controllers\ClientController
ClientController.php:

class in app/controllers/

’Ubiquity controller ClientController

Creates the controller controllers\ClientController

class in app/controllers/

ClientController.php and the associated view in app/views/ClientController/index.html:

’Ubiquity controller ClientController -v

6.3 Action creation

6.3.1 Specifications

e command : action
e Argument: controller-name.action-name

e aliases : new—action

6.3.2 Parameters

default | Allowed values

short name | name role

p params The action parameters (or arguments). a,b=5 or $a,$b,$c
T route The associated route path. /path/to/route

v create-view | Creates the associated view. false true,false

6.3.3 Samples:

Adds the action al1l in controller Users:

Ubiquity action Users.all

code result:

Listing 1: app/controllers/Users.php

index

all

28

Chapter 6. Devtools usage

ubiquity-framework Documentation, Release 2.0.9

Adds the action display in controller Users with a parameter:

Ubiquity action Users.display -p idUser

code result:

Listing 2: app/controllers/Users.php

Users

index

display

Adds the action display with an associated route:

Ubiquity action Users.display -p idUser -r /users/display/ idUser

code result:

Listing 3: app/controllers/Users.php

Users

index

display

Adds the action search with multiple parameters:

Ubiquity action Users.search —-p name,address

code result:

Listing 4: app/controllers/Users.php

Users

index

display

search

(continues on next page)

6.3. Action creation 29

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

Adds the action search and creates the associated view:

’Ubiquity action Users.search -p name,address -v

6.4 Model creation

Note: Optionally check the database connection settings in the app/config/config.php file before running these com-
mands.

To generate a model corresponding to the user table in database:

’Ubiquity model user

6.5 All models creation

For generating all models from the database:

’ Ubiquity all-models

6.6 Cache initialization

To initialize the cache for routing (based on annotations in controllers) and orm (based on annotations in models) :

’ Ubiquity init-cache

30 Chapter 6. Devtools usage

[S

CHAPTER /

URLs

like many other frameworks, if you are using router with it’s default behavior, there is a one-to-one relationship
between a URL string and its corresponding controller class/method. The segments in a URI normally follow this
pattern:

7.1 Default method

When the URL is composed of a single part, corresponding to the name of a controller, the index method of the
controller is automatically called :

URL :

Controller :

Listing 1: app/controllers/Products.php

class Products extends
public function index

7.2 Required parameters

If the requested method requires parameters, they must be passed in the URL:

31

ubiquity-framework Documentation, Release 2.0.9

Controller :

Listing 2: app/controllers/Products.php

Products
display

Valid Urls :

7.3 Optional parameters

The called method can accept optional parameters.

If a parameter is not present in the URL, the default value of the parameter is used.

Controller :

Listing 3: app/controllers/Products.php

Products
sort

Valid Urls :

7.4 Case sensitivity

On Unix systems, the name of the controllers is case-sensitive.

Controller :

Listing 4: app/controllers/Products.php

Products

caselnsensitive

Urls :

32

Chapter 7. URLs

ubiquity-framework Documentation, Release 2.0.9

7.5 Routing customization

The Router and annotations of controller classes allow you to customize URLs.

7.5. Routing customization 33

ubiquity-framework Documentation, Release 2.0.9

34 Chapter 7. URLs

woR W =

CHAPTER 8

Router

Routing can be used in addition to the default mechanism that associates controller/action/{parameters}
with an url.

8.1 Dynamic routes

Dynamic routes are defined at runtime. It is possible to define these routes in the app/config/services.php file.

Important: Dynamic routes should only be used if the situation requires it:
* in the case of a micro-application
* if a route must be dynamically defined

In all other cases, it is advisable to declare the routes with annotations, to benefit from caching.

8.1.1 Callback routes

The most basic Ubiquity routes accept a Closure. In the context of micro-applications, this method avoids having to
create a controller.

Listing 1: app/config/services.php

use

function
echo

Callback routes can be defined for all http methods with:

* Router::post

35

[e Y S P S

ubiquity-framework Documentation, Release 2.0.9

e Router::put
* Router::delete
* Router::patch

* Router::options

8.1.2 Controller routes
Routes can also be associated more conventionally with an action of a controller:

Listing 2: app/config/services.php

use

The method FooController: :index () will be accessible via the url /bar.

In this case, the FooController must be a class inheriting from UbiquitycontrollersController or one of its sub-
classes, and must have an index method:

Listing 3: app/controllers/FooController.php

namespace

class FooController extends

public function index
echo

8.1.3 Default route
The default route matches the path /. It can be defined using the reserved path _default

Listing 4: app/config/services.php

use

8.2 Static routes

Static routes are defined using the @route annotation on controller methods.

Note: These annotations are never read at runtime. It is necessary to reset the router cache to take into account the
changes made on the routes.

36 Chapter 8. Router

L S

ubiquity-framework Documentation, Release 2.0.9

8.2.1 Creation

Listing 5: app/controllers/ProductsController.php

namespace

class ProductsController extends

public function index

The method Products: : index () will be accessible via the url /products.

8.2.2 Route parameters
A route can have parameters:

Listing 6: app/controllers/ProductsController.php

namespace

class ProductsController extends

public function search

8.2.3 Route optional parameters

A route can define optional parameters, if the associated method has optional arguments:

Listing 7: app/controllers/ProductsController.php

namespace

class ProductsController extends

(continues on next page)

8.2. Static routes

37

T

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

8.2.4 Route requirements

php being an untyped language, it is possible to add specifications on the variables passed in the url via the attribute

requirements.

Listing 8: app/controllers/ProductsController.php

ProductsController

list 50

The defined route matches these urls:
* products/all/1/20
e products/all/5/

but not with that one:

e products/all/test

8.2.5 Route http methods
It is possible to specify the http method or methods associated with a route:

Listing 9: app/controllers/ProductsController.php

(continues on next page)

38

Chapter 8. Router

B T = Y S T

S O S

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

ProductsController

index

The methods attribute can accept several methods: @route ("testMethods", "methods"=>["get",
"post", "delete"])

It is also possible to use specific annotations @get, @post... @get ("products")

8.2.6 Route name

It is possible to specify the name of a route, this name then facilitates access to the associated url. If the name attribute
is not specified, each route has a default name, based on the pattern controllerName_methodName.

Listing 10: app/controllers/ProductsController.php

ProductsController

index

8.2.7 URL or path generation

Route names can be used to generate URLSs or paths.

Linking to Pages in Twig

{{ }}" Products

8.2.8 Global route

The @route annotation can be used on a controller class :

Listing 11: app/controllers/ProductsController.php

(continues on next page)

8.2. Static routes 39

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

class ProductsController extends

public function display

In this case, the route defined on the controller is used as a prefix for all controller routes : The generated route for the
action display is /product/all
automated routes

If a global route is defined, it is possible to add all controller actions as routes (using the global prefix), by setting the
automated parameter :

Listing 12: app/controllers/ProductsController.php

namespace

class ProductsController extends

public function generate

public function display

inherited routes

With the inherited attribute, it is also possible to generate the declared routes in the base classes, or to generate routes
associated with base class actions if the automated attribute is set to true in the same time.

The base class:

Listing 13: app/controllers/ProductsBase.php

namespace

abstract class ProductsBase extends

public function index

(continues on next page)

40 Chapter 8. Router

I T R

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

sortBy

The derived class using inherited attribute:

Listing 14: app/controllers/ProductsController.php

ProductsController

display

The inherited attribute defines the 2 routes contained in ProductsBase:
* /products/(index/)?
e /products/sort/{name}

If the automated and inherited attributes are combined, the base class actions are also added to the routes.

8.2.9 Route priority

The prority parameter of a route allows this route to be resolved more quickly.

The higher the priority parameter, the more the route will be defined at the beginning of the stack of routes in the
cache.

In the example below, the products/all route will be defined before the /products route.

Listing 15: app/controllers/ProductsController.php

ProductsController

index

(continues on next page)

8.2. Static routes 41

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

8.3 Routes response caching

It is possible to cache the response produced by a route:

In this case, the response is cached and is no longer dynamic.

public function all

8.3.1 Cache duration

The duration is expressed in seconds, if it is omitted, the duration of the cache is infinite.

public function all

8.3.2 Cache expiration

It is possible to force reloading of the response by deleting the associated cache.

8.4 Dynamic routes caching

Dynamic routes can also be cached.

Important: This possiblity is only useful if this caching is not done in production, but at the time of initialization of
the cache.

function
echo

false

Checking routes with devtools :

Ubiquity info:routes

42 Chapter 8. Router

ubiquity-framework Documentation, Release 2.0.9

8.4. Dynamic routes caching 43

ubiquity-framework Documentation, Release 2.0.9

44 Chapter 8. Router

R L N v

CHAPTER 9

Controllers

A controller is a PHP class inheriting from Ubiquity\controllers\Controller, providing an entry point in
the application. Controllers and their methods define accessible URLs.

9.1 Controller creation

The easiest way to create a controller is to do it from the devtools.

From the command prompt, go to the project folder. To create the Products controller, use the command:

Ubiquity controller Products

The Products . php controller is created in the app/controllers folder of the project.

Listing 1: app/controllers/Products.php

namespace

class Products extends

public function index

It is now possible to access URLs (the i ndex method is solicited by default):

Note: A controller can be created manually. In this case, he must respect the following rules:

45

L Y N

ubiquity-framework Documentation, Release 2.0.9

* The class must be in the app/controllers folder
* The name of the class must match the name of the php file
* The class must inherit from ControllerBase and be defined in the namespace controllers

¢ and must override the abstract index method

9.2 Methods

9.2.1 public

The second segment of the URI determines which public method in the controller gets called. The “index” method is
always loaded by default if the second segment of the URI is empty.

Listing 2: app/controllers/First.php

namespace
class First extends

public function hello
echo

The hello method of the First controller makes the following URL available:

9.2.2 method arguments
the arguments of a method must be passed in the url, except if they are optional.

Listing 3: app/controllers/First.php

namespace
class First extends

public function says
echo

The hello method of the First controller makes the following URLs available:

9.2.3 private

Private or protected methods are not accessible from the URL.

46 Chapter 9. Controllers

ubiquity-framework Documentation, Release 2.0.9

9.3 Default controller

The default controller can be set with the Router, in the services.php file

Listing 4: app/config/services.php

In this case, access to the example.com/ URL loads the controller First and calls the default index method.

9.4 views loading

9.4.1 loading

Views are stored in the app/views folder. They are loaded from controller methods. By default, it is possible to
create views in php, or with twig. Twig is the default template engine for html files.

php view loading
If the file extension is not specified, the load View method loads a php file.

Listing 5: app/controllers/First.php

namespace
class First extends
public function displayPHP

twig view loading
If the file extension is html, the load View method loads an html twig file.

Listing 6: app/controllers/First.php

namespace
class First extends
public function displayTwig

Default view loading

If you use the default view naming method : The default view associated to an action in a controller is located in
views/controller-name/action—name folder:

9.3. Default controller 47

https://twig.symfony.com

L A= N S S vt N

ubiquity-framework Documentation, Release 2.0.9

views

{ Users
L info.html

Listing 7: app/controllers/Users.php

9.4.2 view parameters

One of the missions of the controller is to pass variables to the view. This can be done at the loading of the view, with
an associative array:

Listing 8: app/controllers/First.php

displayTwigWithvar

The keys of the associative array create variables of the same name in the view. Using of this variables in Twig:

Listing 9: app/views/index.html

{{message}} {{recipient}}

Variables can also be passed before the view is loaded:

9.4.3 view result as string

It is possible to load a view, and to return the result in a string, assigning true to the 3rd parameter of the loadview
method :

48 Chapter 9. Controllers

ubiquity-framework Documentation, Release 2.0.9

9.4.4 multiple views loading
A controller can load multiple views:

Listing 10: app/controllers/Products.php

namespace
class Products extends
public function all

Important: A view is often partial. It is therefore important not to systematically integrate the html and body tags
defining a complete html page.

9.4.5 views organization

It is advisable to organize the views into folders. The most recommended method is to create a folder per controller,
and store the associated views there. To load the index.html view, stored in app/views/First:

9.5 initialize and finalize

The initialize method is automatically called before each requested action, the method finalize after each action.

Example of using the initialize and finalize methods with the base class automatically created with a new project:

Listing 11: app/controllers/ControllerBase.php

namespace

use
use

abstract class ControllerBase extends
protected
protected

public function initialize
if

public function finalize

(continues on next page)

9.5. initialize and finalize 49

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

9.6 Access control

Access control to a controller can be performed manually, using the isValid and onlnvalidControl methods.
The isValid method must return a boolean wich determine if access to the action passed as a parameter is possible:
In the following example, access to the actions of the IndexController controller is only possible if an activeUser

session variable exists:

Listing 12: app/controllers/IndexController.php

IndexController

isvValid

If the activeUser variable does not exist, an unauthorized 401 error is returned.

The onlnvalidControl method allows you to customize the unauthorized access:

Listing 13: app/controllers/IndexController.php

IndexController

isValid

onInvalidControl

Listing 14: app/views/unauthorized.html

{{

(continues on next page)

50 Chapter 9. Controllers

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

It is also possible to automatically generate access control from AuthControllers

9.7 Forwarding

A redirection is not a simple call to an action of a controller. The redirection involves the initialize and finalize
methods, as well as access control.

The forward method can be invoked without the use of the initialize and finalize methods:

It is possible to redirect to a route by its name:

9.8 Dependency injection

See Dependency injection

9.9 namespaces

The controller namespace is defined by default to controllers in the app/config/config.php file.

9.10 Super class

Inheritance can be used to factorize controller behavior. The BaseController class created with a new project is present
for this purpose.

9.11 Specific controller base classes

Controller class role

Controller Base class for all controllers

SimpleViewController Base class associated with a php template engine (for using with micro-services)
SimpleViewAsyncController | Base class associated with a php template engine for async servers

9.7. Forwarding 51

ubiquity-framework Documentation, Release 2.0.9

52 Chapter 9. Controllers

cHAaPTER 10

Events

Note: The Events module uses the static class EventsManager to manage events.

10.1 Framework core events

Ubiquity emits events during the different phases of submitting a request. These events are relatively few in number,
to limit their impact on performance.

Part Event name Parameters Occures when

ViewEvents | BEFORE_RENDER | viewname, parameters | Before rendering a view
ViewEvents | AFTER_RENDER viewname, parameters | After rendering a view
DAOEvents | GET_ALL objects, classname After loading multiple objects
DAOEvents | GET_ONE object, classname After loading one object
DAOEvents | UPDATE instance, result After updating an object
DAOEvents | INSERT instance, result After inserting an object

Note:

class perform this operation.

There is no BeforeAction and AfterAction event, since the initialize and finalize methods of the controller

10.2 Listening to an event

Example 1 :

Adding an _updated property on modified instances in the database :

53

ubiquity-framework Documentation, Release 2.0.9

Listing 1: app/config/services.php

use
use

function
if 1
true

Note: The parameters passed to the callback function vary according to the event being listened to.

Example 2 :

Modification of the view rendering

Listing 2: app/config/services.php

use
use

function

10.3 Creating your own events

Example :

Creating an event to count and store the number of displays per action :

Listing 3: app/eventListener/TracePageEventListener.php

namespace

use
use

class TracePageEventListener implements

const

public function on

if (file_exists
include

(continues on next page)

54 Chapter 10. Events

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

10.4 Registering events

Registering the TracePageEventListener event in services.php:

Listing 4: app/config/services.php

use
use

10.5 Triggering events

An event can be triggered from anywhere, but it makes more sense to do it here in the initialize method of the base
controller :

Listing 5: app/controllers/ControllerBase.php

namespace

use
use
use
use
use

abstract class ControllerBase extends
protected
protected
public function initialize

if

(continues on next page)

10.4. Registering events 55

22

23

24

25

26

27

28

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

finalize

The result in app/config/stats.php :

Listing 6: app/config/stats.php

(€]

10.6 Events registering optimization

It is preferable to cache the registration of listeners, to optimize their loading time :

Create a client script, or a controller action (not accessible in production mode) :

initEvents

After running, cache file is generated in app/cache/events/events.cache.php.

Once the cache is created, the services.php file just needs to have the line :

56 Chapter 10. Events

cHAPTER 11

Dependency injection

Note: For performance reasons, dependency injection is not used in the core part of the framework.

Dependency Injection (DI) is a design pattern used to implement IoC. It allows the creation of dependent objects
outside of a class and provides those objects to a class through different ways. Using DI, we move the creation and
binding of the dependent objects outside of the class that depends on it.

Note: Ubiquity only supports property injection, so as not to require introspection at execution. Only controllers
support dependency injection.

11.1 Service autowiring

11.1.1 Service creation
Create a service

Listing 1: app/services/Service.php

namespace

class Service
public function __construct
echo get_class

public function do
echo

57

ubiquity-framework Documentation, Release 2.0.9

11.1.2 Autowiring in Controller
Create a controller that requires the service

Listing 2: app/services/Service.php

namespace

class ClientController extends

private

public function index

public function setService

In the above example, Ubiquity looks for and injects $service when ClientController is created.
The @autowired annotation requires that:

« the type to be instantiated is declared with the @var annotation

* $service property has a setter, or whether declared public

As the annotations are never read at runtime, it is necessary to generate the cache of the controllers:

’Ubiquity init-cache -t controllers

It remains to check that the service is injected by going to the address /ClientController.

11.2 Service injection

11.2.1 Service
Let’s now create a second service, requiring a special initialization.

Listing 3: app/services/ServiceWithlInit.php

class ServiceWithInit
private

public function init
true

(continues on next page)

58 Chapter 11. Dependency injection

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

public function do
if
echo 'init well initialized!'
else
echo 'Service not initialized'

11.2.2 Injection in controller

Listing 4: app/controllers/ClientController.php

namespace

/ * %

/
* Controller Client
*x %/

/

class ClientController extends

/ * %

* [@autc
* Qvar \services\Service
*/

private

/ **
*x @injected
7(//

private

public function index

/ * %
x @param \services\Service S$service
/

*/

public function setService

/ * %
x @param mixed S$serviceToInit
x/

public function setServiceTolInit

11.2. Service injection 59

ubiquity-framework Documentation, Release 2.0.9

11.2.3 Di declaration

In app/config/config.php, create a new key for serviceTolnit property to inject in di part.

function
new

return

generate the cache of the controllers:

Ubiquity init-cache -t controllers

Check that the service is injected by going to the address /ClientController.

Note: If the same service is to be used in several controllers, use the wildcard notation :

function
new

return

11.2.4 Injection with a qualifier name

If the name of the service to be injected is different from the key of the di array, it is possible to use the name attribute
of the @injected annotation

In app/config/config.php, create a new key for serviceTolnit property to inject in di part.

function
new

return

private

11.3 Service injection at runtime

It is possible to inject services at runtime, without these having been previously declared in the controller classes.

60 Chapter 11. Dependency injection

ubiquity-framework Documentation, Release 2.0.9

Listing 5: app/services/RuntimeService.php

RuntimeService
construct

get_class

In app/config/config.php, create the @exec key in di part.

With this declaration, the $rService member, instance of RuntimeService, is injected into all the controllers. It is then
advisable to use the javadoc comments to declare $rService in the controllers that use it (to get the code completion
on $rService in your IDE).

Listing 6: app/controllers/MyController.php

MyController

index

11.3. Service injection at runtime 61

ubiquity-framework Documentation, Release 2.0.9

62 Chapter 11. Dependency injection

cHAPTER 12

CRUD Controllers

The CRUD controllers allow you to perform basic operations on a Model class:
* Create
e Read
* Update

¢ Delete

12.1 Creation

In the admin interface (web-tools), activate the Controllers part, and choose create Crud controller:
=+ Create special controller

Then fill in the form:
¢ Enter the controller name
¢ Select the associated model

¢ Then click on the validate button

63

ubiquity-framework Documentation, Release 2.0.9

Adding a CRUD controller

Name Model
controllers\ UsersController models\User
Addroute...

@ Validate O Cancel

12.2 Description of the features

The generated controller:

Listing 1: app/controllers/Products.php

namespace

* CRUD Controller UsersController
* *

class UsersController extends

public function __construct
parent

public function _getBaseRoute
return 'UsersContro

ar!

Test the created controller by clicking on the get button in front of the index action:

% index()| 4 Createview UsersController/index htm

GET

POST

64 Chapter 12. CRUD Controllers

ubiquity-framework Documentation, Release 2.0.9

12.2.1 Read (index action)

GET:UsersController/index

Id Name Email

1 Henry Zhu henry.zhu@gmail.com

2 EvanYOU Eevanyou@vuejs.org

3 Fabien POTENCIER fab.potencier@symfony.fr

Password

&

T

=z

SHOI0IO,

Close

Clicking on a row of the dataTable (instance) displays the objects associated to the instance (details action):

12.2. Description of the features

65

ubiquity-framework Documentation, Release 2.0.9

Id Name

1 Henry Zhu

2 Evan’YOU

3 Fabien POTENCIER

GET:UsersController/index

Emiail

henry.zhu@gmail.com

evanyou@vuesjs.org

fab.potencier@symfony.fr

Password

-

20
« (
« (o

Q,
estimations (0) projects (1) participations (3)
Vuels Paris-h2
Wuels
Sudoku
Close
Using the search area:
Id Name Email Password
3 Fabien POTENCIER fab.potencier@symfony.fr i rd @
fab Q
12.2.2 Create (newModel action)
It is possible to create an instance by clicking on the add button
4+ Add a new models\User...
The default form for adding an instance of User:
66 Chapter 12. CRUD Controllers

ubiquity-framework Documentation, Release 2.0.9

m models\User
* MNew object creation

Name
Email
Password

Participationslds

@ Validate (O Cancel

12.2.3 Update (update action)

The edit button on each row allows you to edit an instance

#

The default form for adding an instance of User:

12.2. Description of the features 67

ubiquity-framework Documentation, Release 2.0.9

? models\User
E‘Editing an existing object

Name

EvanYOU

Email

evanyou@vuejs.org

Password

Participationslds

Paris-h2 % Vuels x Sudoku %

@ Validate O Cancel

12.2.4 Delete (delete action)

The delete button on each row allows you to edit an instance

®

Display of the confirmation message before deletion:

68

Chapter 12. CRUD Controllers

ubiquity-framework Documentation, Release 2.0.9

Id MName Emiail Password
1 Henry Zhu henry.zhu@gmail.com e = @
2 Evan YOU Evanyou@vuejs.org e rd @
3 Fabien POTENCIER fab.potencier@symfony.fr = = @
Q
Remove confirmation x

Do you confirm the deletion of "evanyou@vuejs.org™?

12.3 Customization

Create again a CrudController from the admin interface:

Adding a CRUD controller

Name Model
controllers\ UsersController models\User -
— Create override Datas class —_— Create override ModelViewer class
— Create override Events class — Create override CRUDFiles class (URLs and files)
@framework/crud/index.html % @framework/crud/form.html % -

@framework/crud/display.html %

| Addroute..

Path

users

@ Validate O Cancel

It is now possible to customize the module using overriding.

12.3. Customization 69

ubiquity-framework Documentation, Release 2.0.9

12.3.1 Overview

[

CrudEvents
v CRUDController
CrudCatas
ModelViewer
CrudFiles
‘ Templates ‘

12.3.2 Classes overriding

CRUDController methods to override

Method | Signification | Default return
routes

index() Default page : list all objects

edit($modal="no”, $ids=") Edits an instance

newModel($modal="no"") Creates a new instance

display($modal="no”,$ids="*) | Displays an instance

delete($ids) Deletes an instance

update() Displays the result of an instance updating
showDetail($ids) Displays associated members with foreign keys
refresh_() Refreshes the area corresponding to the DataTable (#lv)
refreshTable($id=null) //[TO COMMENT

70 Chapter 12. CRUD Controllers

ubiquity-framework Documentation, Release 2.0.9

ModelViewer methods to override

Method Signification Default
return
index route
getModelDataTable($instances, Creates the dataTable and Adds its behavior DataTable
$model,$totalCount,$page=1)
getDataTableln- Creates the dataTable DataTable
stance($instances,$model,$total Count,$page=1)
recordsPerPage($model,$totalCount=0) Returns the count of rows to display (if null there’s no | null or 6
pagination)
getGroupByFields() Returns an array of members on which to perform a | []
grouping
getDataTableRowButtons() Returns an array of buttons to display for each row | [“edit”,’del¢te”]
[“edit”,’delete”, display”]
onDataTableRowButton(HtmlButton $bt) | To override for modifying the dataTable row buttons
getCaptions($captions, $className) Returns the captions of the column headers all mem-
ber names
detail route
showDetailsOnDataTableClick() To override to make sure that the detail of a clicked ob- | true
ject is displayed or not
onDisplayFkElementListDe- To modify for displaying each element in a list compo-
tails($element,$member,$className,$objecthent of foreign objects
getFkHeaderElementDetails($member, Returns the header for a single foreign object (issue from | Html-
$className, $object) ManyToOne) Header
getFkElementDetails($member, $class- | Returns a component for displaying a single foreign ob- | HtmlLa-
Name, $object) ject (manyToOne relation) bel
getFkHeaderListDetails($member, Returns the header for a list of foreign objects (one- | Html-
$className, $list) ToMany or ManyToMany) Header
getFkListDetails($member, $className, | Returns a list component for displaying a collection of | HtmlList
$list) foreign objects (many)
edit and newModel routes
getForm($identifier, $instance) Returns the form for adding or modifying an object Html-
Form
getFormTitle($form,$instance) Returns an associative array defining form message title | Html-
with keys “icon”,’message”,’subMessage”’ Form
setFormFieldsComponent(DataForm Sets the components for each field
$form,$fieldTypes)
onGenerateFormField($field) For doing something when $field is generated in form
isModal($objects, $model) Condition to determine if the edit or add form is modal | count($objects)>5
for $model objects
getFormCaptions($captions, $className, | Returns the captions for form fields all mem-
$instance) ber names
display route
getModelDataEle- Returns a DataElement object for displaying the instance | DataEle-
ment($instance,$model,$modal) ment
getElementCaptions($captions, $class- | Returns the captions for DataElement fields all mem-
Name, $instance) ber names
delete route
onConfirmButtons(HtmIButton $con- | To override for modifying delete confirmation buttons
firmBtn,HtmlButton $cancelBtn)
12.3. Customization 71

ubiquity-framework Documentation, Release 2.0.9

CRUDDatas methods to override

Method | Signification | Default return
index route
_getInstancesFilter($model) Adds a condition for filtering the instances displayed | 1=1
in dataTable
getFieldNames($model) Returns the fields to display in the index action for | all member
$model names
getSearchFieldNames($model) Returns the fields to use in search queries all member
names
edit and newModel routes
getFormField- Returns the fields to update in the edit and newModel | all member
Names($model,$instance) actions for $model names
getManyToOne- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
getOneToMany- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
getManyToMany- Returns a list (filtered) of $fkClass objects to display | all $fkClass in-
Datas($fkClass,$instance,$member) in an html list stances
display route
getElementFieldNames($model) Returns the fields to display in the display action for | all member
$model names
CRUDEvents methods to override
Method Signification Default
return

index route

onConfDeleteMessage(CRUDMessage Returns the confirmation message displayed before | CRUDMes-
$message,$instance) deleting an instance sage
onSuccessDeleteMessage(CRUDMessage | RReturns the message displayed after a deletion CRUDMes-
$message,$instance) sage
onErrorDeleteMessage(CRUDMessage Returns the message displayed when an error occurred | CRUDMes-
$message,$instance) when deleting sage

edit and newModel routes

onSuccessUpdateMes- Returns the message displayed when an instance is | CRUDMes-
sage(CRUDMessage $message) added or inserted sage
onErrorUpdateMessage(CRUDMessage Returns the message displayed when an error occurred | CRUDMes-
$message) when updating or inserting sage

all routes

onNotFoundMessage(CRUDMessage
$message,$ids)

not exists

Returns the message displayed when an instance does

onDisplayEle-
ments($dataTable,$objects,$refresh)

Triggered after displaying objects in dataTable

72

Chapter 12. CRUD Controllers

ubiquity-framework Documentation, Release 2.0.9

CRUDFiles methods to override

html

Method | Signification | Default return

template files

getViewBaseTem- | Returns the base template for all Crud actions if getBaseTemplate | @frame-

plate() return a base template filename work/crud/baseTemplate.}

getViewIndex() Returns the template for the index route @frame-
work/crud/index.html

getViewForm() Returns the template for the edit and newInstance routes @frame-
work/crud/form.html

getViewDisplay() | Returns the template for the display route @frame-
work/crud/display.html

Urls

getRouteRe- Returns the route for refreshing the index route /refresh_

fresh()

getRouteDetails() | Returns the route for the detail route, when the user click on a /showDetail

dataTable row

getRouteDelete() | Returns the route for deleting an instance /delete

getRouteEdit() Returns the route for editing an instance Jedit

getRouteDis- Returns the route for displaying an instance /display

play(Q)

getRouteRe- Returns the route for refreshing the dataTable /refreshTable

freshTable()

getDetailClick- Returns the route associated with a foreign key instance in list «

URL($model)

12.3.3 Twig Templates structure

#fm-add-update #dataTable
frm
dataTable

\

|

I

\ \

\

\ \
| |

index.html

[
L

P T Addanew models\User...

btAddNew -
#btAddNew Id

1

2

Email Password

Name

Henry Zhu henry.zhu@gmail.com

EvanYOU evanyou@vuejs.org

Fabien POTENCIER fab.potencier@symfony.fr

messages - ‘

#table-messages

#table-details

form.html

Displayed in frm block

12.3. Customization 73

ubiquity-framework Documentation, Release 2.0.9

L
L

o

? models\User
E’Edit'\ng an existing ohject

Name

Henry Zhu

Email

henry.zhu@gmail.com

Password

Participationslds

.
L

-
-
o

Paris-h2 %

VuelS x

Sudoku %

ScrumPoker %

@ Validate O Cancel

#action-modal-frmEdit-0

display.htmi

Displayed in frm block

btClose

=+ Add anew models\User...

- r

%X Close I A Delete evan.you@vuejs.org... [# Editevanyou@vuejs.org...
buttons -
#buttans I 5
biClose Name EvanYOU
«_dlose
Email evanyou@vuejs.org
Password evan
J Estimations
Paris-h2
Participations VuelS
Sudoku
Projects Vuels

J

74

Chapter 12. CRUD Controllers

cHAPTER 13

Auth Controllers

The Auth controllers allow you to perform basic authentification with:
¢ login with an account
* account creation
* logout

* controllers with required authentication

13.1 Creation

In the admin interface (web-tools), activate the Controllers part, and choose create Auth controller:
= Create special controller

Then fill in the form:

¢ Enter the controller name (BaseAuthController in this case)

Adding an Auth controller

Name Base class

controllers\ BaseAuthController Ubiguity\controllers\authtAuthController -

Create override AuthFiles class

Add route...

© Validate O Cancel

The generated controller:

75

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

ubiquity-framework Documentation, Release 2.0.9

Listing 1: app/controllers/Base AuthController.php

class BaseAuthController extends

protected function onConnect

if (isset

else

protected function _connect

if
/'/
// the the user to the_,
—parameters
return
public function _isValidUser null
return

public function _getBaseRoute
return

13.2 Implementation of the authentification

Example of implementation with the administration interface : We will add an authentication check on the admin
interface.

Authentication is based on verification of the email/password pair of a model User:

76 Chapter 13. Auth Controllers

ubiquity-framework Documentation, Release 2.0.9

User
-«pke id:int{11)
-name:varchar(45)
-email: varchar({255)

- password:varchar(45)
-estimations : mixed
-participations : mixed
-projects :mixed

13.2.1 BaseAuthController modification

Listing 2: app/controllers/Base AuthController.php

class BaseAuthController extends

protected function onConnect

if (isset
implode
else
protected function _connect
if
return
return
public function _isValidUser null
return

public function _getBaseRoute
return

false

(continues on next page)

13.2. Implementation of the authentification

77

37

39

40

41

42

43

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

x {@inheritDoc}
* @see \Ubiquity\controllers\auth
x

public function _getLoginInputName

return "email"

AuthC

ontrolle

r::

getLoginInputName ()

13.2.2 Admin controller modification

Modify the Admin Controller to use BaseAuthController:

Listing 3: app/controllers/Admin.php

class Admin extends
use
protected function getAuthController
return new

Test the administration interface at /admin:

%] Login

Forbidden access

After clicking on login:
Connection
Email

myaddressmail@gmail.com

Remember me

Connection

If the authentication data entered is invalid:

%] Login

Connection problem
Invalid creditentials!

You are not authorized to access the page Admin !

Password

78

Chapter 13. Auth Controllers

R - NV R S PO SR

ubiquity-framework Documentation, Release 2.0.9

If the authentication data entered is valid:

'/h‘ UbiquityMyAdmin models routes controllers cache rest config git sen logs

myaddressmail @gmail.com Logout

m UbiquityMyAdmin

Ubiquity framework administration web-tools

- Models = Rest
[=]

Used to perform CRUD operations on data. Restfull web service

13.2.3 Attaching the zone info-user
Modify the BaseAuthController controller:

Listing 4: app/controllers/Base AuthController.php

class BaseAuthController extends

public function _displayInfoAsString
return true

The _userInfo area is now present on every page of the administration:

myaddressmail@gmail.com = Logout

It can be displayed in any twig template:

{{ raw }}

13.3 Description of the features

13.3.1 Customizing templates

index.html template

The index.html template manages the connection:

13.3. Description of the features 79

ubiquity-framework Documentation, Release 2.0.9

_before

{{action}}

W

Con

Connection

Example with the _userInfo aera:

o #
Email

nection

myaddressmail@gmail.com

Remember me

_fieldRemember

#ck-remember

{frememberCaption}}

_fieldLogin

{{logininputNamej}

{{loginLabel}l}

Password ~

Create a new AuthController named PersoAuthController:

Adding an Auth controller

Name

controllersh,

@framework/auth/info.html X

Add route...

@ Validate O Cancel

Edit the template app/views/PersoAuthController/info.html

PersoAuthController

Create override AuthFiles class

Listing 5: app/views/PersoAuthController/info.html

Base class

controllers\BaseAuthController

_fieldPassword

{{passwordinputName}}

{{passwordLabel}l}

{%
{%

{%
{%

{%
{%

{%
{%

{3
(%

{%
{%

extends
block

endblock $%}
block

{{ parent
endblock $%}
block

{{ parent
endblock $%}
block

{{ parent
endblock $%}
block

{{ parent
endblock $%}
block

{{ parent

%}

i

i

i

i

i

%}

s}

%}

%}

%}

"@framework/auth/info.html" $%}

(continues on next page)

80

Chapter 13. Auth Controllers

20
21

22

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

{% endblock %}
{% block %}

{% endblock %}

Change the AuthController Admin controller:

Listing 6: app/controllers/Admin.php

class Admin extends
use
protected function getAuthController
return new

ﬁ UbiquityMyAdmin models routes controllers cache rest config git 5e0 logs

myaddressmail@gmail.com & Logout

o: UbiquityMyAdmin

Ubiquity framework administration web-tools

Models mn Rest
=]

—]
Used to perform CRUD operations on data. Restfull web service

13.3.2 Customizing messages

Listing 7: app/controllers/PersoAuthController.php

class PersoAuthController extends

/ %%
* {@inheritDoc}
x @see \Ubiquity\controllers\auth\AuthController::badLoginMessage ()
*/
protected function badLoginMessage
"Erreur d'authentification"
"Login ou mot de passe incorrects

[

"Essayer a nouveau"

13.3.3 Self-check connection

13.3. Description of the features 81

ubiquity-framework Documentation, Release 2.0.9

Listing 8: app/controllers/PersoAuthController.php

class PersoAuthController extends

public function _checkConnectionTimeout
return 10000

13.3.4 Limitation of connection attempts

Listing 9: app/controllers/PersoAuthController.php

class PersoAuthController extends

protected function attemptsNumber
return 3

82 Chapter 13. Auth Controllers

cHAPTER 14

Database

The DAO class is responsible for loading and persistence operations on models :

14.1 Connecting to the database

Check that the database connection parameters are correctly entered in the configuration file:

’Ubiquity config —-f database

field

database

\A\providers\\pdo\\PDOWrapper'

14.1.1 Transparent connection

Since Ubiquity 2.3.0, The connection to the database is done automatically the first time you request it:

This is the case for all methods in the DAO class used to perform CRUD operations.

83

ubiquity-framework Documentation, Release 2.0.9

14.1.2 Explicit connection

In some cases, however, it may be useful to make an explicit connection to the database, especially to check the
connection.

use
use

try

catch
echo

14.2 Multiple connections

14.2.1 Adding a new connection

Ubiquity allows you to manage several connections to databases.

With Webtools

In the Models part, choose Add new connection button:

Models

¥ Used to perform CRUD operations on data.

Define the connection configuration parameters:

84 Chapter 14. Database

ubiquity-framework Documentation, Release 2.0.9

Adding a new DB connection

Connection name tests

Provider pdo -
Type mysql -
dbName utest
serverName 127.0.0.1 127.0.0.1
port 3306
user root root
password
options arrayl) array()
cache

@ Validate O Cancel

Generate models for the new connection: The generated models include the @dat abase annotation mentioning their
link to the connection.

namespace

class Groupe

Models are generated in a sub-folder of models.

With several connections, do not forget to add the following line to the services.php file:

The start method performs the match between each model and its associated connection.

14.2. Multiple connections 85

ubiquity-framework Documentation, Release 2.0.9

86 Chapter 14. Database

cHAPTER 15

Models generation

15.1 From existing database

¢ with console

¢ with web-tools

87

ubiquity-framework Documentation, Release 2.0.9

88 Chapter 15. Models generation

cHAPTER 16

ORM

Note: if you want to automatically generate the models, consult the generating models part.

A model class is just a plain old php object without inheritance. Models are located by default in the app\models
folder. Object Relational Mapping (ORM) relies on member annotations in the model class.

16.1 Models definition

16.1.1 A basic model

* A model must define its primary key using the @id annotation on the members concerned
¢ Serialized members must have getters and setters
* Without any other annotation, a class corresponds to a table with the same name in the database, each member

corresponds to a field of this table

Listing 1: app/models/User.php

namespace
class User

private
private

public function getFirstname
return

(continues on next page)

89

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

public function setFirstname

16.1.2 Mapping

Table->Class

If the name of the table is different from the name of the class, the annotation @table allows to specify the name of

the table.

Listing 2: app/models/User.php

namespace

class User

private
private

public function getFirstname
return

public function setFirstname

Field->Member

If the name of a field is different from the name of a member in the class, the annotation @column allows to specify

a different field name.

Listing 3: app/models/User.php

namespace

class User

private

(continues on next page)

90

Chapter 16. ORM

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

private

public function getFirstname
return

public function setFirstname

16.1.3 Associations

Note: Naming convention Foreign key field names consist of the primary key name of the referenced table followed
by the name of the referenced table whose first letter is capitalized. Example idUser for the table user whose

primary key is id

ManyToOne

A user belongs to an organization:

User Organization
- «id» id 1 > - «id» id
- firstname - hame
- lasthame - address
Listing 4: app/models/User.php
namespace

class User

private

private

private

(continues on next page)

16.1. Models definition

91

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

public function getOrganization
return

public function setOrganization

The @joinColumn annotation specifies that:

* The member $organization is an instance of modelsOrganization
* The table user has a foreign key idOrganization refering to organization primary key

* This foreign key is not null => a user will always have an organization

OneToMany

An organization has many users:

User Organization
- «id» id - - «id» id
- firstname 0..* - hame
- lasthame - address

Listing 5: app/models/Organization.php

namespace

class Organization

private

private

private

In this case, the association is bi-directional. The @oneToMany annotation must just specify:

* The class of each user in users array : modelsUser

* the value of @mappedBy is the name of the association-mapping attribute on the owning side : $organization
in User class

92

Chapter 16. ORM

ubiquity-framework Documentation, Release 2.0.9

ManyToMany

* A user can belong to groups.

* A group consists of multiple users.

User

- «id» id

Group

- «id» id

- firstname 0..*
- Name
- lastname
Listing 6: app/models/User.php
namespace

class User

private

private

private

Listing 7: app/models/Group.php

namespace

class Group

private

private

private

If the naming conventions are not respected for foreign keys, it is possible to specify the related fields.

16.1. Models definition

ubiquity-framework Documentation, Release 2.0.9

Listing 8: app/models/Group.php

Group

16.2 ORM Annotations

16.2.1 Annotations for classes

@annotation | role

| properties | role

@table Defines the associated table name.

16.2.2 Annotations for members

@annotation | role | properties | role

@id Defines the primary key(s).

@column Specify the associated field caracteristics. | name Name of the associated field
nullable true if value can be null
dbType Type of the field in database

@transient Specify that the field is not persistent.

94

Chapter 16. ORM

ubiquity-framework Documentation, Release 2.0.9

16.2.3 Associations

@annotation | role properties role
(extends) [optional]
@manyToOne | Defines a single-valued association to another entity class.
@joinColumn | Indicates the foreign key in many- className Class of the member
(@column) ToOne asso. [referenced- Name of the associated column
Column-
Name]
@oneToMany | Defines a multi-valued association to | className Class of the objects in member
another entity class. [mappedBy] Name of the association-mapping at-
tribute on the owning side
@manyToMany| Defines a many-valued association targetEntity Class of the objects in member
with many-to-many multiplicity [inversedBy] Name of the association-member on
the inverse-side
[mappedBy] Name of the association-member on
the owning side
@joinTable Defines the association table for name The name of the association table
many-to-many multiplicity [joinColumns] | @column => name and referenced-
ColumnName for this side
[inverseJoin- @column => name and referenced-
Columns] ColumnName for the other side

16.2. ORM Annotations

95

ubiquity-framework Documentation, Release 2.0.9

96 Chapter 16. ORM

cHAPTER 17

DAO

The DAO class is responsible for loading and persistence operations on models :

17.1 Connecting to the database

Check that the database connection parameters are correctly entered in the configuration file:

’Ubiquity config —-f database

Since 2.3.0 release

Database startup with DAO: : startDatabase ($Sconfig) in services.php file is useless, no need to start the
database, the connection is made automatically at the first request. Use DAO: : start () in app/config/services.php
file when using several databases (with multi db feature)

17.2 Loading data

17.2.1 Loading an instance

Loading an instance of the models\User class with id 5

use

Loading an instance using a condition:

use

false

97

ubiquity-framework Documentation, Release 2.0.9

BelongsTo loading

By default, members defined by a belongsTo relationship are automatically loaded

Each user belongs to only one category:

It is possible to prevent this default loading ; the third parameter allows the loading or not of belongsTo members:

5

HasMany loading

Loading hasMany members must always be explicit ; the third parameter allows the explicit loading of members.

Each user has many groups:

Composite primary key

Either the ProductDetail model corresponding to a product ordered on a command and whose primary key is compos-
ite:

Listing 1: app/models/ProductDetail.php

ProductDetail

The second parameter $keyValues can be an array if the primary key is composite:

18

98 Chapter 17. DAO

ubiquity-framework Documentation, Release 2.0.9

17.2.2 Loading multiple objects

Loading instances of the User class:

foreach as
echo

loading of related members

Loading instances of the User class with its category and its groups :

foreach as
echo
echo
echo
echo
foreach as
echo

echo

Descending in the hierarchy of related objects: Loading instances of the User class with its category, its groups and
the organization of each group :

foreach as
echo
echo
echo
echo
foreach as
echo
echo

echo

Using wildcards:

Loading instances of the User class with its category, its groups and all related members of each group:

17.2.3 Querying using conditions
Simple queries

The condition parameter is equivalent to the WHERE part of an SQL statement:

false

17.2. Loading data 99

ubiquity-framework Documentation, Release 2.0.9

To avoid SQL injections and benefit from the preparation of statements, it is preferable to perform a parameterized
query:

false
—false

UQueries

The use of U-queries allows to set conditions on associate members:

Selection of users whose organization has the domain lecnam.net:

false

It is possible to view the generated request in the logs (if logging is enabled):

Database

SELECT “User™.id",'User"." firstname™,"User"."lastname’,"User"email’,"User".’ password",User.’suspended”, User™.
L] prepareAndFetchAll “idOrganization” FROM "User” INNER JOIN "Organization” "Organization_U5cc496ddé7c4a” ON "User . idOrgani g1
zation”="Organization_U5cc4%6ddé7cda’.id” WHERE Organization_U5ccd96ddé7cda.domain=7

The result can be verified by selecting all users in this organization:

The corresponding logs:

Database
o SELECT "Userid", User™. firstname”, Userlastname’, User " email", User' . password™, User™. suspended”, User™. -
¢ prepareAndFetchAl “idOrganization” FROM "User’ WHERE idQrganization=? S
o prepareAndFetchAl SELECT "Organization™."id","Organization™.'name’, Organization’."domain’, Organization’. aliases” FROM "Organi =1

zation” WHERE domain=? limit 1

17.3 Modifying data

17.3.1 Adding an instance

Adding an organization:

new

if
echo

Adding an instance of User, in an organization:

new

(continues on next page)

100 Chapter 17. DAO

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

if
echo

17.3.2 Updating an instance

First, the instance must be loaded:

false

if
echo

17.3.3 Deleting an instance

If the instance is loaded from database:

5, false
if
echo

If the instance is not loaded, it is more appropriate to use the delete method:

if 5
echo

17.4 Deleting multiple instances

Deletion of multiple instances without prior loading:

if 1,2,3
echo

17.5 Bulk queries

Bulk queries allow several operations (insertion, modification or deletion) to be performed in a single query, which
contributes to improved performance.

17.5.1 Bulk inserts

Insertions example:

17.4. Deleting multiple instances 101

ubiquity-framework Documentation, Release 2.0.9

17.5.2 Bulk updates

Updates example:

17.5.3 Bulk deletes

Deletions example

The DAO: :flush() method can be called if insertions, updates or deletions are pending.

17.6 SDAO class

The SDAO class accelerates CRUD operations for the business classes without relationships.

Models must in this case declare public members only, and not respect the usual encapsulation.

Listing 2: app/models/Product.php

Product

102

Chapter 17. DAO

ubiquity-framework Documentation, Release 2.0.9

The SDAO class inherits from DAQO and has the same methods for performing CRUD operations.

use

17.7 Prepared DAO queries

Preparing certain requests can improve performance with Swoole, Workerman or Roadrunner servers. This preparation
initializes the objects that will then be used to execute the query. This initialization is done at server startup, or at the
startup of each worker, if such an event exists.

17.7.1 Swoole sample

Preparation

Listing 3: app/config/swooleServices.php

function use

Usage

Listing 4: app/controllers/UsersController.php

public function displayUser

echo

public function displayProducts

17.7. Prepared DAO queries 103

ubiquity-framework Documentation, Release 2.0.9

104 Chapter 17. DAO

cHAPTER 18

Request

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The URequest class provides additional functionality to more easily manipulate native $_POST and $_GET php
arrays.

18.1 Retrieving data

18.1.1 From the get method

The get method returns the null value if the key name does not exist in the get variables.

use

The get method can be called with the optional second parameter returning a value if the key does not exist in the get
variables.

18.1.2 From the post method

The post method returns the null value if the key name does not exist in the post variables.

use

105

ubiquity-framework Documentation, Release 2.0.9

The post method can be called with the optional second parameter returning a value if the key does not exist in the

post variables.

The getPost method applies a callback to the elements of the $_POST array and return them (default callback :

htmlEntities) :

18.2 Retrieving and assigning multiple data

It is common to assign the values of an associative array to the members of an object. This is the case for example
when validating an object modification form.

The setValuesToObject method performs this operation :

Consider a User class:

class User
private
private
private
public function

public function
return

public function

public function
return

public function

public function
return

setId

getId

setFirstname

getFirstname

setLastname

getLastname

Consider a form to modify a user:

form

input
label
input
label
input
input

form

Firstname:

Lastname:

label

label

106

Chapter 18. Request

ubiquity-framework Documentation, Release 2.0.9

The update action of the Users controller must update the user instance from POST values. Using the setPostVal-
uesToObject method avoids the assignment of variables posted one by one to the members of the object. It is also
possible to use setGetValuesToObject for the get method, or setValuesToObject to assign the values of any associa-

tive array to an object.

Listing 1: app/controllers/Users.php

namespace

use
use

class Users extends

public function update

Note: SetValuesToObject methods use setters to modify the members of an object. The class concerned must
therefore implement setters for all modifiable members.

18.3 Testing the request

18.3.1 isPost

The isPost method returns true if the request was submitted via the POST method: In the case below, the initialize
method only loads the vHeader.html view if the request is not an Ajax request.

Listing 2: app/controllers/Users.php

namespace

use
use

class Users extends

public function update
if

18.3.2 isAjax

The isAjax method returns true if the query is an Ajax query:

18.3. Testing the request 107

R T T

ubiquity-framework Documentation, Release 2.0.9

Listing 3: app/controllers/Users.php

initialize

18.3.3 isCrossSite

The isCrossSite method verifies that the query is not cross-site.

108

Chapter 18. Request

cHAPTER 19

Response

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The UResponse class handles only the headers, not the response body, which is conventionally provided by the content
displayed by the calls used to output data (echo, print .. .).

The UResponse class provides additional functionality to more easily manipulate response headers.

19.1 Adding or modifying headers

use

Forcing multiple header of the same type:

’ false

Forces the HTTP response code to the specified value:

’ false, 500

19.2 Defining specific headers

19.2.1 content-type

Setting the response content-type to application/json:

109

ubiquity-framework Documentation, Release 2.0.9

Setting the response content-type to text/html:

|

Setting the response content-type to plain/text:

|

Setting the response content-type to application/xml:

|

Defining specific encoding (default value is always utf-8):

|

19.3 Cache

Forcing the disabling of the browser cache:

|

19.4 Accept

Define which content types, expressed as MIME types, the client is able to understand. See Accept default values

|

19.5 CORS responses headers

Cross-Origin Resource Sharing (CORS) is a mechanism that uses additional HTTP headers to tell a browser to let
your web application running at one origin (domain) have permission to access selected resources from a server at a
different origin.

19.5.1 Access-Control-Allow-Origin

Setting allowed origin:

19.5.2 Access-Control-Allow-methods

Defining allowed methods:

110 Chapter 19. Response

https://developer.mozilla.org/en-US/docs/Web/HTTP/Content_negotiation/List_of_default_Accept_values

ubiquity-framework Documentation, Release 2.0.9

19.5.3 Access-Control-Allow-headers

Defining allowed headers:

19.5.4 Global CORS activation

enabling CORS for a domain with default values:

¢ allowed methods: GET, POST, PUT, DELETE, PATCH, OPTIONS

¢ allowed headers: X—-Requested-With, Content-Type, Accept, Origin, Authorization

19.6 Testing response headers

Checking if headers have been sent:

if

Testing if response content-type is application/json:

Important: This method only works if you used the UResponse class to set the headers.

if

19.6. Testing response headers

111

ubiquity-framework Documentation, Release 2.0.9

112 Chapter 19. Response

cHAPTER 20

Session

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The USession class provides additional functionality to more easily manipulate native $_SESSION php array.

20.1 Starting the session

The Http session is started automatically if the sessionName key is populated in the app/config.php configuration
file:

return array

If the sessionName key is not populated, it is necessary to start the session explicitly to use it:

use

Note: The name parameter is optional but recommended to avoid conflicting variables.

113

ubiquity-framework Documentation, Release 2.0.9

20.2 Creating or editing a session variable

use

20.3 Retrieving data

The get method returns the null value if the key name does not exist in the session variables.

use

The get method can be called with the optional second parameter returning a value if the key does not exist in the
session variables.

Note: The session method is an alias of the get method.

The getAll method returns all session vars:

|

20.4 Testing

The exists method tests the existence of a variable in session.

if

The isStarted method checks the session start

if

20.5 Deleting variables

The delete method remove a session variable:

114 Chapter 20. Session

ubiquity-framework Documentation, Release 2.0.9

20.6 Explicit closing of the session

The terminate method closes the session correctly and deletes all session variables created:

|

20.6. Explicit closing of the session 115

ubiquity-framework Documentation, Release 2.0.9

116 Chapter 20. Session

CHAPTER 21

Cookie

Note: For all Http features, Ubiquity uses technical classes containing static methods. This is a design choice to avoid
dependency injection that would degrade performances.

The UCookie class provides additional functionality to more easily manipulate native $_ COOKIES php array.

21.1 Cookie creation or modification

use

Creating a cookie that lasts 5 days:

5+60+60+24

On a particular domain:

5+60+60+24

Sending a cookie without urlencoding the cookie value:

Testing the cookie creation:

if

117

ubiquity-framework Documentation, Release 2.0.9

21.2 Retrieving a Cookie

21.2.1 Testing the existence

if

21.2.2 Using a default value

If the page cookie does not exist, the default value of 1 is returned:

’ 1

21.3 Deleting a cookie

Deleting the cookie with the name page:

|

21.4 Deleting all cookies

Deleting all cookies from the entire domain:

|

Deleting all cookies from the domain admin:

|

118 Chapter 21. Cookie

)

© ® N9 w R W

CHAPTER 22

Views

Ubiquity uses Twig as the default template engine (see Twig documentation). The views are located in the app/views
folder. They must have the .html extension for being interpreted by Twig.

Ubiquity can also be used with a PHP view system, to get better performance, or simply to allow the use of php in the
views.

22.1 Loading

Views are loaded from controllers:

Listing 1: app/controllers/Users.php

namespace

class Users extends

public function index

22.1.1 Default view loading

If you use the default view naming method : The default view associated to an action in a controller is located in
views/controller-name/action—name folder:

views

{ Users
L info.html

119

https://twig.symfony.com/doc/2.x/

[Y I S VO SR

[S S T

© ® N L R W N —

ubiquity-framework Documentation, Release 2.0.9

Listing 2: app/controllers/Users.php

namespace

class Users extends

public function info

22.2 Loading and passing variables

Variables are passed to the view with an associative array. Each key creates a variable of the same name in the view.

Listing 3: app/controllers/Users.php

namespace
class Users extends

public function display

In this case, it is usefull to call Compact for creating an array containing variables and their values :

Listing 4: app/controllers/Users.php

namespace
class Users extends

public function display
compact

22.3 Displaying in view

The view can then display the variables:

120 Chapter 22. Views

[S

ubiquity-framework Documentation, Release 2.0.9

Listing 5: users/display.html

{{typel}}
{{message}}

Variables may have attributes or elements you can access, too.

You can use a dot (.) to access attributes of a variable (methods or properties of a PHP object, or items of a PHP array),
or the so-called “subscript” syntax ([]):

{{ i
{{ 1}

22.4 Ubiquity extra functions

Global app variable provides access to predefined Ubiquity Twig features:
* app is an instance of Framework and provides access to public methods of this class.

Get framework installed version:

{{ 'y

Return the active controller and action names:

{{ }}
{{ }}

Return global wrapper classes :

For request:

Kt 13

For session :

it 1}

see Framework class in API for more.

22.5 PHP view loading

Disable if necessary Twig in the configuration file by deleting the templateEngine key.

Then create a controller that inherits from SimpleViewController, or SimpleViewAsyncController if
you use Swoole or Workerman:

Listing 6: app/controllers/Users.php

(continues on next page)

22.4. Ubiquity extra functions 121

https://api.kobject.net/ubiquity/class_ubiquity_1_1core_1_1_framework.html

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

public function display

compact

Note: In this case, the functions for loading assets and themes are not supported.

122

Chapter 22. Views

CHAPTER 23

Assets

Assets correspond to javascript files, style sheets, fonts, images to include in your application. They are located from

the public/assets folder. It is preferable to separate resources into sub-folders by type.

public/assets
css
|: style.css
semantic.min.css
is
L jquery.min.js

Integration of css or js files :

{{ }}
{{

{{ i

}}

{{

{{

}}

'y

CDN with extra parameters:

{{
- {

123

ubiquity-framework Documentation, Release 2.0.9

124 Chapter 23. Assets

CHAPTER 24

Themes

Ubiquity support themes wich can have it’s own assets and views according to theme template to be rendered by
controller. Each controller action can render a specific theme, or they can use the default theme configured at config.php
filein templateEngineOptions => array ("activeTheme" => "semantic").

Ubiquity is shipped with 3 default themes : Bootstrap, Foundation and Semantic-UI.

24.1 Installing a theme

With devtools, run :

’Ubiquity install-theme bootstrap

The installed theme is one of bootstrap, foundation or semantic.

With webtools, you can do the same, provided that the devtools are installed and accessible (Ubiquity folder added in
the system path) :

125

ubiquity-framework Documentation, Release 2.0.9

& Themes
Themes module

Ubiquity Save

Ubiquity devtools

x
- The project folder is C\xampp7.3\htdocs\verif
-PHP7.3.2

- Ubiquity devtools (1.1.7+)
- Ubiquity 2.0.11+

Active theme: m

Installed themes semantic

-“ Install an existing theme

bootstrap o foundation &

i Create a new theme

Ex‘:endsm 7

24.2 Creating a new theme

With devtools, run :

’Ubiquity create-theme myTheme

Creating a new theme from Bootstrap, Semantic. ..

With devtools, run :

’Ubiquity create-theme myBootstrap —-x bootstrap

With webtools :

126

Chapter 24. Themes

ubiquity-framework Documentation, Release 2.0.9

Themes
.l

Themes module
Ubiquity Save

Ubiquity devtools

- The project folder is Cxampp7.3\htdocs\werif
-PHP7.3.2

- Ubigquity devtools (1.1.7+)
- Ubiquity 2.0.11+

»

Active theme:
Installed themes semantic

-‘. Install an existing theme

bootstrap & foundation &

i Create anew theme

myBootstrap bootstrap x

24.3 Theme functioning and structure

24.3.1 Structure

Theme view folder

The views of a theme are located from the app/views/themes/theme-name folder

app/views
L themes
bootstrap
L main
t vHeader.html
vFooter.html
semantic
L main

t vHeader.html
vFooter.html

The controller base class is responsible for loading views to define the header and footer of each page :

Listing 1: app/controllers/ControllerBase.php

namespace

use
use

(continues on next page)

24.3. Theme functioning and structure 127

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

abstract class ControllerBase extends
protected
protected

public function initialize
if

public function finalize
if

Theme assets folder
The assets of a theme are created inside public/assets/theme—-name folder.

The structure of the assets folder is often as follows :

public/assets/bootstrap
- css
t style.css
all.min.css
- scss
t myVariables.scss
app.scss
- webfonts

L img

24.4 Change of the active theme

24.4.1 Persistent change

activeTheme is defined in app/config/config.php with templateEngineOptions =>
array ("activeTheme" => "semantic")

The active theme can be changed with devtools :

Ubiquity config:set —--templateEngineOptions.activeTheme bootstrap

It can also be done from the home page, or with webtools :

From the home page :

128 Chapter 24. Themes

ubiquity-framework Documentation, Release 2.0.9

Themes bootstrap semantic

o It works !

Your application is now ready. You can start working by reading the Quick start guide.

From the webtools :

Active theme:

Installed themes bootstrap semantic

This change can also be made at runtime :

From a controller :

24.4.2 Non-persistent local change

To set a specific theme for all actions within a controller, the simplest method is to override the controller’s initialize
method :

Listing 2: app/controllers/Users.php

namespace
use
class Users extends

public function initialize
parent

Or if the change should only concern one action :

Listing 3: app/controllers/Users.php

namespace

use

class Users extends

public function doStuff

(continues on next page)

24.4. Change of the active theme 129

e - N R S Ve Ry R

I T N v

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

Conditional theme change, regardless of the controller :

Example with a modification of the theme according to a variable passed in the URL

Listing 4: app/config/services.php

24.5 View and assets loading

24.5.1 Views
For loading a view from the activeTheme folder, you can use the @activeTheme namespace :

Listing 5: app/controllers/Users.php

action

If the activeTheme is bootstrap, the loaded view is app/views/themes/bootstrap/action.html.

24.5.2 DefaultView

If you follow the Ubiquity view naming model, the default view loaded for an action in a controller when a theme is
active is : app/views/themes/theme-name/controller—name/action-name.html.

For example, if the activeTheme is bootstrap, the default view for the action display in the Users controller must be
loacated in app/views/themes/bootstrap/Users/display.html.

Listing 6: app/controllers/Users.php

(continues on next page)

130 Chapter 24. Themes

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

class Users extends

public function display

Note: The devtools commands to create a controller or an action and their associated view use the @activeTheme
folder if a theme is active.

Ubiquity controller Users -v

Ubiquity action Users.display -v

24.6 Assets loading

The mechanism is the same as for the views : @activeTheme namespace refers to the public/assets/
theme-name/ folder

{{ F}

{{ }}

If the bootstrap theme is active, the assets folder is public/assets/bootstrap/.

24.7 Css compilation

For Bootstrap or foundation, install sass:

’npm install -g sass

Then run from the project root folder:

For bootstrap:

ssass public/assets/bootstrap/scss/app.scss public/assets/bootstrap/css/style.css ——
—load-path vendor

For foundation:

ssass public/assets/foundation/scss/app.scss public/assets/foundation/css/style.css —-—
—load-path vendor

24.6. Assets loading 131

ubiquity-framework Documentation, Release 2.0.9

132 Chapter 24. Themes

CHAPTER 25

jQuery Semantic-Ul

By default, Ubiquity uses the phpMv-UI library for the client-rich part. PhpMyv-UI allows to create components based
on Semantic-UI or Bootstrap and to generate jQuery scripts in PHP.

This library is used for the webtools administration interface.

25.1 Integration

By default, a $jquery variable is injected in controllers at runtime.

This operation is done using dependency injection, in app/config.php:

Listing 1: app/config.php

array
array
function
return

So there’s nothing to do, but to facilitate its use and allow code completion in a controller, it is recommended to add
the following code documentation:

Listing 2: app/controllers/FooController.php

(continues on next page)

133

https://phpmv-ui.kobject.net

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

class FooController extends

public function index

25.2 jQuery

25.2.1 Href to ajax requests
Create a new Controller and its associated view, then define the folowing routes:

Listing 3: app/controllers/FooController.php

namespace
class FooController extends

public function index

public function aAction
echo

public function bAction
echo

The associated view:

Listing 4: app/views/FooController/index.html

a Action a a
a Action b a

Initialize router cache:

Ubiquity init:cache -t controllers

Test this page in your browser at http://127.0.0.1:8090/FooController.

134 Chapter 25. jQuery Semantic-Ul

ubiquity-framework Documentation, Release 2.0.9

Transformation of requests into Ajax requests

The result of each ajax request should be displayed in an area of the page defined by its jQuery selector (. result
span)

Listing 5: app/controllers/FooController.php

namespace

class FooController extends

public function index

Listing 6: app/views/FooController/index.html

a Action a a
a Action b a
div
Selected action:
span No One span
div
{{ script_foot | raw }}

Note: The script_foot variable contains the generated jquery script produced by the renderView method. The
raw filter marks the value as being “safe”, which means that in an environment with automatic escaping enabled this

variable will not be escaped.

Let’s add a little css to make it more professional:

Listing 7: app/views/FooController/index.html

div
a Action a a
a Action b a
div
div
Selected action:
span No One span
div
{{ script_foot | raw }}

If we want to add a new link whose result should be displayed in another area, it is possible to specify it via the
data-target attribute

The new action:

25.2. jQuery 135

ubiquity-framework Documentation, Release 2.0.9

Listing 8: app/controllers/FooController.php

namespace

class FooController extends

public function cAction
echo 0, 1000

The associated view:

Listing 9: app/views/FooController/index.html

div
a Action a 'a
a Action b a
a Action c
— a
div
div

Selected action:
span No One span
P P
div
{{ script_foot | raw }}

GET:FooController/index

Action a Actionb Actionc

Action choisie: b
86

Close

Definition of the ajax request attributes:

In the folowing example, the parameters passed to the attributes variable of the get Hre f method:
» remove the history of the navigation,

» make the ajax loader internal to the clicked button.

136 Chapter 25. jQuery Semantic-Ul

ubiquity-framework Documentation, Release 2.0.9

Listing 10: app/controllers/FooController.php

namespace

* @property \Ajax\php\ubiquity\JsUtils $jquery

class FooController extends

public function index
'a','.result span'
'hasLoader'’ 'internal'
'historize' false

"FooController/index.html"

Note: It is possible to use the postHref method to use the POST http method.

25.2.2 Classical ajax requests

For this example, create the following database:

CREATE DATABASE DEFAULT CHARACTER SET COLLATE

CREATE TABLE user
int (11) NOT NULL
varchar (30) NOT NULL
varchar (30) NOT NULL

DEFAULT
INSERT INTO wuser VALUES
1 ! 'Evan'
2 1 . ~ 1 lf‘—(,—\‘",_::—‘l
3 ! 'Taylor'

Connect the application to the database, and generate the User class:

With devtools:

Ubiquity config:set —--database.dbName uguide
Ubiquity all-models

Create a new Controller UsersJqueryController

Ubiquity controller UsersJqueryController -v

Create the folowing actions in UsersJqueryController:

25.2. jQuery

137

20

21

22

23

ubiquity-framework Documentation, Release 2.0.9

Controller Action [routes] Default values

¥ index() ® /fusers/(index/)?

L4 controllers\UsersJgueryControlle + ¥ displayUsers() & Jusers/allf ﬂ

¥ displayOneUser (userld) & /fusers/[.+7)/

Index action
The index action must display a button to obtain the list of users, loaded via an ajax request:

Listing 11: app/controllers/UsersJqueryController.php

namespace

class UsersJqueryController extends

public function index

The default view associated to index action:

Listing 12: app/views/UsersJqueryController/index.html

div
div
i i
Display b users b
div
p P
div
div
div

raw }}

{{ script_foot

138 Chapter 25. jQuery Semantic-Ul

ubiquity-framework Documentation, Release 2.0.9

displayUsers action

All users are displayed, and a click on a user must display the user details via a posted ajax request:

Listing 13: app/controllers/UsersJqueryController.php

UsersJqueryController

displayUsers

The view associated to displayUsers action:

Listing 14: app/views/UsersJqueryController/displayUsers.html

Users

{% for user in users %}

{% endfor %}

{{ script_foot | raw }}

{{user.firstname }}

Close

{{user.lastname}}

25.2. jQuery

139

20

21

22

ubiquity-framework Documentation, Release 2.0.9

displayOneUser action

Listing 15: app/controllers/UsersJqueryController.php

namespace

class UsersJqueryController extends

public function displayOneUser

true

The view associated to displayOneUser action:

Listing 16: app/views/UsersJqueryController/displayUsers.html

div
i i
Id
div {{user.id}} div
div
div
Firstname
div {{user.firstname}} diwv
div
div
Lastname
div {{user.lastname}} diwv
div
P P
div
i i
Return to users
div
{{ script_foot | raw }}

25.3 Semantic components

/ltodo HtmlButton sample +++++++++++++++++

140 Chapter 25

. jQuery Semantic-Ul

ubiquity-framework Documentation, Release 2.0.9

/Itodo DataTable sample +++++++++++++++++

25.3. Semantic components 141

ubiquity-framework Documentation, Release 2.0.9

142 Chapter 25. jQuery Semantic-Ul

CHAPTER 20

Normalizers

Note: The Normalizer module uses the static class NormalizersManager to manage normalization.

143

ubiquity-framework Documentation, Release 2.0.9

144 Chapter 26. Normalizers

CHAPTER 27

Validators

Note: The Validators module uses the static class ValidatorsManager to manage validation.

Validators are used to check that the member datas of an object complies with certain constraints.

27.1 Adding validators

Either the Author class that we want to use in our application :

Listing 1: app/models/Author.php

namespace

class Author

private

public function getName
return

public function setName

We added a validation constraint on the name member with the @validator annotation, so that it is not empty.

145

ubiquity-framework Documentation, Release 2.0.9

27.2 Generating cache

Run this command in console mode to create the cache data of the Author class :

|

Validator cache is generated in app/cache/contents/validators/models/Author.cache.php.

27.3 Validating instances

27.3.1 an instance

public function testValidateAuthor
new

if(sizeof 0
echo implode
else
echo

if the name of the author is empty, this action should display:

name : This wvalue should not be empty

The validate method returns an array of ConstraintViolation instances.

27.3.2 multiple instances

public function testValidateAuthors

foreach as
echo

27.4 Models generation with default validators

When classes are automatically generated from the database, default validators are associated with members, based on
the fields’ metadatas.

146 Chapter 27. Validators

ubiquity-framework Documentation, Release 2.0.9

Listing 2: app/models/Author.php

These validators can then be modified. Modifications must always be folowed by a re-initialization of the model cache.

|

Models validation informations can be displayed with devtools :

27.4. Models generation with default validators 147

ubiquity-framework Documentation, Release 2.0.9

htdoc

value

id’,constraints: [autoinc: true]]

firstname . e: 'length’,constraints: [max: nothull: true]]

lastname

email . e: 'emai constraints: [notNull: true]]
mstraints: [

password . e: 2 cconstraints: [m

'isBool’,constraints: []]

Gets validators on email field:

[mothull: true]

Validation informations are also accessible from the models part of the webtools:

E models\User

Data administration
Datas Structure Validation
id [[type: 'id', constraints: [auteinc: true]]]
firstname [[type: lenzth’, constraints: [max: 65, notNull: true]]]
lastname [[type: lensth’, constraints: [max: 65, notNull: truel]]
email [[type: 'email’, constraints: [notMull: truel], [type: 'length’, constraints: [max: 255]]]
password [[type: lenzth’, constraints: [max: 255]]]
suspended [[type: isBoal’, constraints: [1]]
v Validate instances

148 Chapter 27. Validators

ubiquity-framework Documentation, Release 2.0.9

27.5 Validator types

27.5.1 Basic
Validator | Roles Constraints | Accepted values
isBool Check if value is a boolean true,false,0, 1
isEmpty Check if value is empty null
isFalse Check if value is false false, false’,0,‘0’
isNull Check if value is null null
isTrue Check if value is true true,’true’,1,1’
notEmpty | Check if value is not empty Inull && !’°
notNull Check if value is not null Inull
type Check if value is of type {type} | {type}

27.5.2 Comparison
27.5.3 Dates
27.5.4 Multiples

27.5.5 Strings

27.5. Validator types

149

ubiquity-framework Documentation, Release 2.0.9

150 Chapter 27. Validators

CHAPTER 28

Transformers

Note: The Transformers module uses the static class TransformersManager to manage data transformations.

Transformers are used to transform datas after loading from the database, or before displaying in a view.

28.1 Adding transformers

Either the Author class that we want to use in our application :

Listing 1: app/models/Author.php

namespace

class Author

private

public function getName
return

public function setName

We added a transformer on the name member with the @transformer annotation, in order to capitalize the name in

the views.

151

ubiquity-framework Documentation, Release 2.0.9

28.2 Generating cache

Run this command in console mode to create the cache data of the Author class :

’Ubiquity init-cache -t models

transformer cache is generated with model metadatas in app/cache/models/Author.cache.php.

Transformers informations can be displayed with devtools :

’Ubiquity info:model -m Author -f

#transformers . : [name: "Ubiq

28.3 Using transformers

Start the TransformersManager in the file app/config/services.php:

Listing 2: app/config/services.php

You can test the result in the administration interface:

Id Name

1 JOHN GRISHAM

2 JOANNE ROWLING

3 STEPHEN EDWIN KING

or by creating a controller:

Listing 3: app/controllers/Authors.php

Authors

index

152

Chapter 28. Transformers

ubiquity-framework Documentation, Release 2.0.9

Listing 4: app/views/Authors/index.html

ul
% for author in authors %}
1i {{ author.name }} 1li
% endfor %}
ul

28.4 Transformer types

28.4.1 transform

The transform type is based on the TransformerInterface interface. It is used when the transformed data must be
converted into an object. The DateTime transformer is a good example of such a transformer:

* When loading the data, the Transformer converts the date from the database into an instance of php DateTime.

* Its reverse method performs the reverse operation (php date to database compatible date).

28.4.2 toView

The toView type is based on the TransformerViewInterface interface. It is used when the transformed data must be
displayed in a view.

28.4.3 toForm

The toForm type is based on the TransformerFormInterface interface. It is used when the transformed data must be
used in a form.

28.5 Transformers usage

28.5.1 Transform on data loading

If ommited, default transformerOp is transform

Set transformerOp to toView

28.5.2 Transform after loading

Return the transformed member value:

28.4. Transformer types 153

ubiquity-framework Documentation, Release 2.0.9

Return a transformed value:

|

Transform an instance by applying all defined transformers:

|

28.6 Existing transformers

Transformer | Type(s) Description

datetime transform, toView, toForm | Transform a database datetime to a php DateTime object
upper toView Make the member value uppercase

lower toView Make the member value lowercase

firstUpper toView Make the member value first character uppercase
password toView Mask the member characters

md5 toView Hash the value with md5

28.7 Create your own

28.7.1 Creation

Create a transformer to display a user name as a local email address:

Listing 5: app/transformers/toLocalEmail.php

ToLocalEmail

toView

sprintf strtolower

28.7.2 Registration

Register the transformer by executing the following script:

28.7.3 Usage

154

Chapter 28. Transformers

ubiquity-framework Documentation, Release 2.0.9

Listing 6: app/models/User.php

getName

setName

Smith user name will be displayed as smith@mydomain.local.

28.7. Create your own

155

ubiquity-framework Documentation, Release 2.0.9

156 Chapter 28. Transformers

CHAPTER 29

Translation module

Note: The Translation module uses the static class TranslatorManager to manage translations.

29.1 Module structure

Translations are grouped by domain, within a locale :
In the translation root directory (default app/translations):
» Each locale corresponds to a subfolder.

* For each locale, in a subfolder, a domain corresponds to a php file.

translations
en_EN
t messages.php
blog.php
fr_ FR
t messages.php
blog.php

* each domain file contains an associative array of translations key-> translation value
¢ Each key can be associated with

— atranslation

— atranslation containing variables (between % and %)

— an array of translations for handle pluralization

157

ubiquity-framework Documentation, Release 2.0.9

Listing 1: app/translations/en_EN/messages.php

return

29.2 Starting the module

Module startup is logically done in the services.php file.

Listing 2: app/config/services.php

With no parameters, the call of the start method uses the locale en_EN, without fallbacklocale.

Important: The translations module must be started after the cache has started.

29.2.1 Setting the locale
Changing the locale when the manager starts:

Listing 3: app/config/services.php

Changing the locale after loading the manager:

29.2.2 Setting the fallbackLocale
The en_EN locale will be used if fr_FR is not found:

Listing 4: app/config/services.php

29.3 Defining the root translations dir

If the rootDir parameter is missing, the default directory used is app/translations.

158 Chapter 29. Translation module

ubiquity-framework Documentation, Release 2.0.9

Listing 5: app/config/services.php

29.4 Make a translation

29.4.1 With php

Translation of the okayBtn key into the default locale (specified when starting the manager):

|

With no parameters, the call of the trans method uses the default locale, the domain messages.

Translation of the message key using a variable:

|

In this case, the translation file must contain a reference to the user variable for the key message:

Listing 6: app/translations/en_EN/messages.php

29.4.2 In twig views:

Translation of the okayBtn key into the default locale (specified when starting the manager):

i 13

Translation of the message key using a variable:

i 13

29.4. Make a translation 159

ubiquity-framework Documentation, Release 2.0.9

160 Chapter 29. Translation module

cHAPTER 30

Rest

The REST module implements a basic CRUD, with an authentication system, directly testable in the administration
part.

30.1 REST and routing

The router is essential to the REST module, since REST (Respresentation State Transfer) is based on URLs and HTTP
methods.

Note: For performance reasons, REST routes are cached independently of other routes. It is therefore necessary to
start the router in a particular way to activate the REST routes and not to obtain a recurring 404 error.

The router is started in services.php.

Without activation of REST routes:

Listing 1: app/config/services.php

To enable REST routes in an application that also has a non-REST part:

Listing 2: app/config/services.php

To activate only Rest routes:

161

ubiquity-framework Documentation, Release 2.0.9

It is possible to start routing conditionally (this method will only be more efficient if the number of routes is large in
either part):

Listing 3: app/config/services.php

if 'isRest'

else

30.2 Resource REST

A REST controller can be directly associated with a model.

Note: If you do not have a mysql database on hand, you can download this one: messagerie.sql

30.2.1 Creation

With devtools:

Ubiquity rest RestUsersController -r User -p /rest/users

Or with webtools:

Go to the REST section and choose Add a new resource:

& (Re-)Init Rest cache + Add a new resource Access token »

New resource
v Creatinga new REST controller...

Controller name * Base class

controllers\ RestUsersController Ubiquity\controllersirest\RestContraller -
Main route path ® Resource

Jrest/users models\User -

| Re-init Rest cache (recommanded)

4+ Create new controller Cancel

The created controller :

Listing 4: app/controllers/RestUsersController.php

namespace

(continues on next page)

162 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

LN

* (drest (
x/

class RestUsersController extends

Since the attributes automated and inherited of the route are set to true, the controller has the default routes of the
parent class.

30.2.2 Test interface

Webtools provide an interface for querying datas:

& (Re-)Init Rest cache + Add a new resource Access token *

© models\User

x
e Rest Controller RestUsers

-
Controller Route
controllers\RestUsers Jrest/users
Path Methods Action & Parameters Cache Exp?
& frest/users/delete/(*7) delete [..keyValues) i
& frest/users/get/(77) get (condition, included, useCache)
& /rest/users/getOne/(.+7)/(7) getOne (keyValues” included, useCache)

& Jrest/users/update/(*7) patch update (.keyValues) @
& Jfrestfusers/add/ E add ()

& frest/users/{index/)? index ()

& Jrest/users/connect/ connect ()

Getting an instance

A user instance can be accessed by its primary key (id):

30.2. Resource REST 163

ubiquity-framework Documentation, Release 2.0.9

= frest/users/getOne/(+7

getOne (keyValues®, included, useCache) @ @
Method getOne

x
Get the first object corresponding to the $keyValues

e » string $keyValues primary key(s) value(s) or condition
* boolean|string $included if true, loads associate members with associations, if string, example : client.,.commands
¢ boolean $useCache if true then response is cached

frest/users/getOne/1 GET -

4
By

Use payload == Response status : OK

Request headers

©: Request parameters

"firstnam
"lastname
“"email”: “benjamin.sherman@gmail.com”,
Response headers "password OWCBORSWEAE™ ,

"suspended
"idOrganization™: "2"

nsa) OpenssL/l.1.1a PHP/7.3.2",
"o,

; charset=utfs",

revalidate”,

Inclusion of associated members: the organization of the user

164 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

[rest/users/getOne/1/organization GET -

% Peramerers.. m

Use payload ¥ Response status : OK m

Request headers

22 Request parameters 2 “Benjamin",

benjamin.sherman@gmail.com™,

A R AR A
Response headers *

1) OpensSL/l.1.1a PHP/?.3.2",

Inclusion of associated members: organization, connections and groups of the user

30.2. Resource REST 165

ubiquity-framework Documentation, Release 2.0.9

Jrest/users/zetOne/1true GET -

£
i
o
I

Use pay = Response status : 0K m

Request headers

X Request parameters 3 “Benjamin®,
"sh ns",
njamin.sherman@email .com™ ,
. mEkkEEkkEEEET .
Response headers !

"unicaen.fr",
"aliases": null
1
FE]
“connections”: [
I

2813-86-84 84:25:13",
"organizations/display/2",

“iduser”: "1"

organizations/display/2",
“iduser™: "1

=5d": "53",

Auditeurs”,
"autiteurs”,

"ETU; STAGIAIRES; ™,
"idorganization”: "

Getting multiple instances

Getting all instances:

166 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

& /rest/orgas/get/("?) m get (condition, included, useCache) @ @
FEmeters. m

[rest/orgas/get/ GET -

Use payload ¥ Response status: OK m

Request headers

%5 Request parameters
CONSERVATOIRE NATIONAL DES ARTS ET M&TIERS",
"domain”: "lecnam.net”,

Response headers "aliases™: “cnam-basse-normandie.fr;cnam.fr"

UNIVERSITE DE CAEN-NORMANDIE",
“unicaen.fr”,

a) OpenssL/1.1.1a PHP/7.3.2" i¥: null

json; charset=utfs", e IUT CAMPUS III",

" http", "iutc3.unicaen.fr”,

unicaen.fr”

IUT LISIEUX",
"iut.lisieux.unicaen.¥r",
unicaen.fr”

CNAM™,
"lecnam.org"”,

GOOGLE",
"google.com",

Setting a condition:

30.2. Resource REST 167

ubiquity-framework Documentation, Release 2.0.9

/rest/orgas/get/name like 'c™' GET -

Use payload

Request headers

X Reguest parameters

Response headers

ONSERVATOIRE NATIONAL DES ARTS ET METIE

: "lecnam.net”,
4) OpenSSL/1.1.1a PHP/7.3.2" "aliases™: “cnam-basse-normandie.fr;cnam.fr"
h
R],

" count”

charset=utfs",

" htep”,

Including associated members:

168 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

/rest/orgas/get/name like 'c”Vgroupes

Use payload

Request headers

5 Request parameters

Response headers

Adding an instance

= Response status: OK m

b
1
}
1.

"count”:

2

lecnam.org”,

: "cnam.org”,

|

NSERVATOIRE NATIONAL DES ARTS ET M&TIERS",
lecnam.net™,
cnam-basse-normandie.fr;cnam.fr",

ersonnels™,
personnels”,
: "ALL;

"Auditeurs”™,
autiteurs™,

: "ETU;STAGIAIRES;",

"idOrganization™: "1"

o Perameters. m

The datas are sent by the POST method, with a content type defined at application/
x-www—form-urlencoded:

Add name and domain parameters by clicking on the parameters button:

30.2. Resource REST 169

ubiquity-framework Documentation, Release 2.0.9

Parameters for the GET:/rest/orgas/add/

Get parameters
Enter your parameters.

Parameter name Parameter value

name Google x
Parameter name Parameter value

domain google.c0m| b4

Add parameters from models\Organization

Validate Close

The addition requires an authentication, so an error is generated, with the status 401:

& [rest/orgas/add/ ﬁ add C:‘g ﬂ @
Method add x
Insert a new instance of $model
9 Require members values in $_POST array

Requires an authorization with access token

frest/orgas/add/ POST -

o Perameters. m

Use payload & Response status : Unauthorized m

Request headers

{"code™:401, "status":5@0,"source":
{"pointer”:"C:\\xampp? .3\\htdocs\\ve e r\\phpmv\iubigquity\\src\\Ubiquity\\contr
ollers\\rest\\RestBaseController.php "ti HTTP\/1.1 401 Unauthorized, you need an
%% Request parameters FETEEs ey T i . -
C:\\xampp7.3\\htdocs\\verif3\\vendor\\phpmvi\\ubiquity\\src\\Ubiquity\\controllers\\rest
w w \\RestBaseController.php(52): Ubiquity\\controllers\\rest\\RestBaseController-
>onInvalidControl()\n#l

name Google " C:\\xampp7.3\\htdocs\\verif3\\vendor\\phpmvi\ubiquity\\src\\Ubiquity\\controllers\\Star

tup.php(132): Ubiquity\\controllers\\rest\\RestBaseController->_ construct()\n#2
C:\\xampp7.3\\htdocs\\verif3\\vendor\\phpmvi\ubiquity\\src\\Ubiquity\\controllers\\Star
tup.php(3@}: Ubiquity\\controllers\\Startup::runAction(Array, true, true)\n#3
C:\\xampp7.3\\htdocs\\verif3\\vendor\\phpmvi\ubiquity\\src\\Ubiquity\\controllers\\Star
tup.php(9@): Ubiquity\\controllers\\Startup::_preRunAction(Array, true, true)\n#4
Hesponssheade:s C:\\xampp7.3\\htdocs\\verif3\\vendor\\phpmv\\ubiquity\\src\\Ubiquity\\controllers\\Star

domain google.com x

tup.php(73): Ubiguity\\controllers\\Startup::forward(rest\/orgas\/add")\n#5
C:\\xampp7.3\\htdocs\\verif3\\index.php(9):
Ubiquity\\controllers\\Startup: :run(Array)\n#6 {main}"}

The administration interface allows you to simulate the default authentication and obtain a token, by requesting the

170 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

connect method:

& /rest/orgas/connect/ connect (@

Method connect

Realize the connection to the server
To override in derived classes to define your own authentication

Jrest/orgas/connect/

= Response status : OK m

Use payload

Request headers

{

"access_token "f604f868e96a47181b8e" ,

"token_type Bearer”,
"expires_in": 3680

}

25 Request parameters

Response headers

"authorization™: * Bearer f694f858295347181b88"

4) OpenssL/1.1.1a PHR/7.3.2"

The token is then automatically sent in the following requests. The record can then be inserted.

171

30.2. Resource REST

ubiquity-framework Documentation, Release 2.0.9

frest/orgas/add/

Use payload

Request headers

87 Request parameters

name Zoogle x

domain googlecom x

Response headers

"authorization”: * Bearer f694f868e96347181h80"

3.2"

Updating an instance

POST

= Response status: OK m

The update follows the same scheme as the insertion.

Srameters.. m

172

Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

Deleting an instance

& [rest/orgas/delete/(7?) m delete (..keyValues) @ & a

e Perameters m

frest/orgas/delete/64 DELETE -

Use payload = Response status: OK

Request headers

5 Request parameters
GOOGLE",
"domain google.com”,

"aliases”: null,

Response headers
"links™: {
"self”: "/rest/orgas/get/66"

{ }

Sfcefsdcf2177F74326120ce24d

30.3 Authentification

Ubiquity REST implements an Oauth2 authentication with Bearer tokens. Only methods with @authorization
annotation require the authentication, these are the modification methods (add, update & delete).

update

The connect method of a REST controller establishes the connection and returns a new token. It is up to the developer
to override this method to manage a possible authentication with login and password.

30.3. Authentification 173

ubiquity-framework Documentation, Release 2.0.9

T
L

“token_type”: "Bearer”,
“expires _in": 3680

30.3.1 Simulation of a connection with login

In this example, the connection consists simply in sending a user variable by the post method. If the user is provided,
the connect method of $server instance returns a valid token that is stored in session (the session acts as a

database here).

Listing 5: app/controllers/RestOrgas.php

RestOrgas

connect

For each request with authentication, it is possible to retrieve the connected user (it is added here in the response

headers) :

174

Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

Listing 6: app/controllers/RestOrgas.php

isvalid

Use the webtools interface to test the connection:

30.3. Authentification 175

ubiquity-framework Documentation, Release 2.0.9

Method connect
9 This method simulate a connection.

Send a user variable with POST method to retreive a valid access token

Jrest/orgas/connect/ POST -

Use payload & Response status: OK m

Request headers

{
“access_token™: "547c156ccead5d69f8ab38dacdbb5eafdefafb56™,
~ “token_type”: "Bearer”,
. Request parameters "expires in": 3600,
“user”: "Snow”
use Snow x

Response headers

"pragma”: " no-cache”,

"date”: " Mon, 15 Apr 2819 17",

"server”: " Apache/2.4.38 (Wined) OpenssL/l.1.1a PHP/7.3.2",
"x-powered-by": " PHP/7.3.2",

"x-xdebug-profile-filename": " C",

"wary": " Accept”,

"content-type”: " text/html; charset=UTF-8",
"access-control-max-age”: " 864097,

"cache-control”: " no-store, no-cache, must-revalidate",
"access-control-allow-credentials™: " true”,
“"authorization": " Bearer 547c158cceadSdedfsab3sdacdbbSeafdefafbss”,
“connection”: " Keep-Alive”,

"keap-alive”: " timeout=5, max=99~,

"content-length": " 113",

"expires”: " Thu, 19 Nov 1981 @g"

30.4 Customizing

30.4.1 Api tokens
It is possible to customize the token generation, by overriding the getRest Server method:

Listing 7: app/controllers/RestOrgas.php

RestOrgas

getRestServer

32
4800

(continues on next page)

176 Chapter 30. Rest

S

© ® N9 u AW

R - NV R S OO S

2 owow =

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

30.4.2 Allowed origins

Allowed origins allow to define the clients that can access the resource in case of a cross domain request by defining
The Access-Control-Allow-Origin response header.

Listing 8: app/controllers/RestOrgas.php

RestOrgas

getRestServer

It is possible to authorize several origins:

Listing 9: app/controllers/RestOrgas.php

RestOrgas

getRestServer

30.4.3 Response
To change the response format, it is necessary to create a class inheriting from ResponseFormatter. We will take
inspiration from HAL, and change the format of the responses by:

* adding a link to self for each resource

* adding an _embedded attribute for collections

* removing the data attribute for unique resources

Listing 10: app/controllers/RestOrgas.php

(continues on next page)

30.4. Customizing 177

w

R IS

ubiquity-framework Documentation, Release 2.0.9

(continued from previous page)

MyResponseFormatter

cleanRestObject

getOne

Then assign MyResponseFormatter to the REST controller by overriding the getResponseFormatter
method:

Listing 11: app/controllers/RestOrgas.php

RestOrgas

getResponseFormatter

Test the results with the getOne and get methods:

"id": "1,
"name”: “"CONSERVATOIRE MATIONAL DES ARTS ET METIERS™,
"domain”: "lecnam.net™,

"aliases”: "cnam-basse-normandie.fr;cnam.fr”,
"links™: {
"self": "/rest/orgas/get/1"

178

Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

" embedded”: [

I
L

"id": "3,
“name”: "CNAM",
"domain": "lecnam.org",
"aliases": "cnam.org",
"links™: {

"self”: "/rest/orgas/get/36"

1
i)

"id": 17,
“name”: “"CONSERVATOIRE MATIOMAL DES ARTS ET METIERS"™,
“domain”: “lecnam.net",
"aliases™: "cnam-basse-normandie.fr;cnam.fr"”,
"links": {
"self": "/frest/orgas/get/1"
1
}
1,

"count™: 2

30.5 APIs

Unlike REST resources, APIs controllers are multi-resources.

30.5.1 SimpleRestAPI
30.5.2 JsonApi

Ubiquity implements the jsonApi specification with the class JsonApiRestController. JsonApi is used by
Ember]JS and others. see https://jsonapi.org/ for more.

Creation

With devtools:

Ubiquity restapi JsonApiTest —-p /Jjsonapi

Or with webtools:

Go to the REST section and choose Add a new resource:

30.5. APIs 179

https://api.emberjs.com/ember-data/release/classes/DS.JSONAPIAdapter
https://jsonapi.org/

ubiquity-framework Documentation, Release 2.0.9

&= (Re-)Init Rest cache + Add a new resource Accesstoken 8g42d6733b126b0fbES W

New resource

“+ Creating a new REST controller...

Controller name Base class

controllers\ JsonApiTest Ubiguity\controllersirest\api\jsonapiJsonApiRestController -

Main route path *

/jsonapi/

| Re-init Rest cache (recommanded)

=+ Create new controller Cancel

Test the api in webtools:

(Re-)Init Rest cache + Add a new resource Access token | |ccess token »

© JsonAPI 1.0
-
Controller Route
controllers' JsonApiTest fjsonapi
Path Methods Action & Parameters Cache Exp?
= fjsonapif(7?) options options [.resource)
= fjsonapiflinks/ index ()
= fjsonapi/(.+2)/[+?)/relationships/(.+2)/ m getRelationShip_(resource”, id”, member™}

2 Sjsonapif(.+2)/(+2) get getOne_{resource™ id™)
& fisonapif{.+2)/ get zetAll_(resource™)
& /jsonapi/.+2)/

add_(resource™)

& fjsonapif{.+2)/(*7) patt update_(resource”, ...id)

100
4

& fisonapif{.+2)/(>7)/ delete_({resource”, ...id)

& fjsonapi/connect/ connect {}

Links

The links route (index method) returns the list of available urls:

180 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

fisonapi/links/

Use payload

Request headers

L2 Request parameters

Response headers

1) OpenssLil.1.1a PHR/7.3

charset=utfa"

t-revalidate”,

Getting an array of objects

GET -

& Response status : OK m

{

"links™: [

I
L

"method™: “options”,

“url”: “/jsonapi/{resource}”

"method": “"get",

"url”: “/jsonapiflinks/"

"method": “"get",

“url”: “/jsonapi/{resource}/{id}/relationships/{member}/"

"method": "get",

“url”: “/jsonapi/{resource}/{id}/"

Is

By default, all associated members are included:

“method™: “get”,
"url”: "/jsonapi/{resource}/"

“method™: “post”,
"url": “/jsonapi/{resource}/"

"method”: “"patch”,
"url”: */jsonapi/{resource}/{id}"

5 Perameters. m

30.5. APIs

181

ubiquity-framework Documentation, Release 2.0.9

i Perameters. m

[jsonapi/users GET -

Use payload & Response status: QK m

Request headers

% Request parameters

Response headers
"lastnam “Shermans”™,

"email”: "benjamin.sherman@gmail.com”,
‘ “password”: EERARREET
"suspended”:

: "/jsonapifuser/i/"

"relationships”: {
"organization™: {
“data”

LE "organization”

"links": [
"/jsonapifuser/1/organization/",
"/jsonapiforganization/2/"

]

b

1
"included”: {
"organization™: {
"idv: "2,

Including associated members

you need to use the include parameter of the request:

URL Description
/jsonapi/user?include=false No associated members are included
/jsonapi/user?include=organization Include the organization
/jsonapi/user?include=organization, Include the organization and the connec-
connections tions
/jsonapi/user?include=groupes.organization Include the groups and their organization

Filtering instances

you need to use the filter parameter of the request, filter parameter corresponds to the where part of an SQL statement:

URL Description

/jsonapi/user?1l=1 No filtering

/jsonapi/user?firstname="'Benjamin’' Returns all users named Benjamin

/jsonapi/user?filter=firstname like 'Bx' Returns all users whose first name begins with
aB

/jsonapi/user?filter=suspended=0 and Returns all suspended users whose lastname

lastname like 'cax' begins with ca

182 Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

Pagination

you need to use the page[number] and page[size] parameters of the request:

URL Description

/jsonapi/user No pagination
/jsonapi/user?page [number]=1 Display the first page (page size is 1)
/jsonapi/user?page [number]=1&&page[size]=10 | Display the first page (page size is 10)

Adding an instance

The datas, contained in data[attributes], are sent by the POST method, with a content type defined at
application/json; charset=utf-8.

Add your parameters by clicking on the parameters button:

Parameters for the POST:/jsonapi/organization

Post parameters
Enter your parameters.
Parameter name Parameter value

data {'attributes':{'name':'phva'.'domain':'kobject.net'}ﬂ b4

Validate Close

The addition requires an authentication, so an error is generated, with the status 401 if the token is absent or expired.

30.5. APIs 183

ubiquity-framework Documentation, Release 2.0.9

= fjsonapi/(+7)/ w

add_(resource”)@ &

/isonapi/organizations/

| Use payload

Request headers

5 Request parameters

data {"attributes":{'name"'php! x

Response headers

d-by": " F

"authorization”

Deleting an instance

Deletion requires the DELETE method, and the use of the id of the object to be deleted:

POST v

= Response status: OK

“attributes”: {
phpiv™,
"kobject.net”

7"/jsonapi/or'ganization{sz/“

e Perameters. m

184

Chapter 30. Rest

ubiquity-framework Documentation, Release 2.0.9

=

=_(resource”,..id)@ &

/isonapi/organizations/32/

Use payload

Request headers

5 Request parameters

Response headers

1
"date”: " Wed, 17 Apr 2819
"x-powerad-by”: " PHR/T.3.27
"authorization": " Bearer

ontrol-max-age”:

-filename":

1low-methods®

application

L-allow-o

" no-store,

"expires": " Thu, 19 Nov 1981 &8"

DELETE -

&= Response status : O m

"deleted”,

"id": "32",

"type": "organization”,

"attributes™: {
“name”: “"PHPMV",
“domain "kobject.net”,
"aliases™: null

"/jsonapi/organization/3:

Smerers.. m

30.5. APIs

185

ubiquity-framework Documentation, Release 2.0.9

186 Chapter 30. Rest

CHAPTER 31

Webtools

Note: Webtools allow you to manage an Ubiquity application via a web interface
are in a separate repository.

. Since Ubiquity 2.2.0, webtools

31.1 Installation

Update the devtools if necessary to get started:

’composer global update

31.1.1 At the project creation

Create a projet with webtools (—a option)

Ubiquity new quick-start -a

31.1.2 In an existing project

In a console, go to the project folder and execute:

’Ubiquity admin

31.2 Starting

Start the embedded web server, from the project folder:

187

https://github.com/phpMv/ubiquity-webtools

ubiquity-framework Documentation, Release 2.0.9

Ubiquity serve

go to the address: http://127.0.0.1:8090/Admin

ﬁ UbiquityMyadmin models routes controllers cache rest config sit se0 logs translate themes maintenance

Web-tools

Ubiquity framework administration

' Models Git

Used to perform CRUD operations on data. Gitversioning

Q Routes G Seo

Displays defined routes with annotations Search Engine Optimization
o Controllers &, Logs
Displays controllers and actions Logfiles
* Cache oe Translate
Annotations, models, router and controller cache Translation module
men Rest P Themes
] L J
Restfull web service Themes module

ag Config

Configuration variables

31.3 Customizing

Click on customize to display only the tools you use:

Web-tools

Ubiquity framework administration

Ordering and selecting tools

Customizing
o You can select and re-order your tools.

To re-order or move a tool to another side, the tools must be de-selected and then selected in the desired order.

Leftside Right side

models % routes X controllers % - config X cache X -

l Reset configuration parameters

@ Validate O Cancel

188 Chapter 31. Webtools

ubiquity-framework Documentation, Release 2.0.9

ﬁ UbiquityMyadmin models routes controllers config cache

LR Senen
Ubiquity framework administration

Models ag Config

Used to paerform CRUD operations on data. Configuration variables

Routes Cache

Displays defined routes with annotations Annotations, models, router and controller cache

ow Controllers

Displays controllers and actions

31.4 Webtools modules

31.4.1 Routes

=& Routes

Displays defined routes with annotations

Displays default (non REST) routes.
Operations:

» Filter routes

¢ Test routes (GET, POST...)

e Initialize router cache

31.4.2 Controllers

ow Controllers

Displays controllers and actions

Displays non REST controllers.

Operations:
* Create a controller (and optionally the view associated to the default index action)
 Create an action in a controller (optionally the associated view, the associated route)
* Create a special controller (CRUD or Auth)
¢ Test an action (GET, POST...)

31.4. Webtools modules 189

ubiquity-framework Documentation, Release 2.0.9

31.4.3 Models

' Models
L4

Used to perform CRUD operations on data.

Displays the metadatas of the models, allows to browse the entities.
Operations:

¢ Create models from database

* Generate models cache

* Generate database script from existing models

* Performs CRUD operations on models

31.4.4 Rest

== Rest
=3 Restfull web service

Displays an manage REST services.
Operations:
* Re-initialize Rest cache and routes
* Create a new Service (using an api)
* Create a new resource (associated to a model)
 Test and query a web service using http methods

* Performs CRUD operations on models

31.4.5 Cache

Cache

Annotations, models, router and controller cache

Displays cache files.
Operations:
¢ Delete or re-initialize models cache
* Delete or re-initialize controllers cache

¢ Delete other cache files

31.4.6 Maintenance

t‘h Maintenance
Manages maintenance modes

Allows to manage maintenance modes.

190 Chapter 31. Webtools

ubiquity-framework Documentation, Release 2.0.9

Operations:
* Create or update a maintenance mode
¢ De/Activate a maintenance mode

¢ Delete a maintenance mode

31.4.7 Config

Config

Configuration variables

Allows the display and modification of the app configuration.

31.4.8 Git

o Git
Git versioning

Synchronizes the project using git.
Operations:
* Configuration with external repositories
e Commit
* Push
e Pull

& Themes
¥ Themes module

Manages Css themes.
Operations:
¢ Install an existing theme
* Activate a theme

* Create a new theme (eventually base on an existing theme)

31.4. Webtools modules 191

ubiquity-framework Documentation, Release 2.0.9

192 Chapter 31. Webtools

CHAPTER 32

Contributing

32.1 System requirements

Before working on Ubiquity, setup your environment with the following software:
* Git

e PHP version 7.1 or above.

32.2 Get Ubiquity source code

On Ubiquity github repository :
¢ Click Fork Ubiquity project

* Clone your fork locally:

’git clone git@github.com:USERNAME/ubiquity.git

32.3 Work on your Patch

Note: Before you start, you must know that all the patches you are going to submit must be released under the Apache
2.0 license, unless explicitly specified in your commits.

32.3.1 Create a Topic Branch

Note: Use a descriptive name for your branch:

193

https://github.com/phpMv/ubiquity

ubiquity-framework Documentation, Release 2.0.9

* issue_xxx where xxx is the issue number is a good convention for bug fixes

» feature_name is a good convention for new features

git checkout -b NEW_BRANCH_NAME master

32.3.2 Work on your Patch

Work on your code and commit as much as you want, and keep in mind the following:
¢ Read about the Ubiquity coding standards;
* Add unit, fonctional or acceptance tests to prove that the bug is fixed or that the new feature actually works;
* Do atomic and logically separate commits (use git rebase to have a clean and logical history);
* Write good commit messages (see the tip below).
* Increase the version numbers in any modified files, respecting semver rules:
Given a version number MAJOR . MINOR . PATCH, increment the:
— MAJOR version when you make incompatible API changes,
— MINOR version when you add functionality in a backwards-compatible manner, and

— PATCH version when you make backwards-compatible bug fixes.

32.4 Submit your Patch

Update the [Unrelease] part of the CHANGELOG.md file by integrating your changes into the appropriate parts:
e Added
¢ Changed
* Removed
* Fixed

Eventualy rebase your Patch Before submitting, update your branch (needed if it takes you a while to finish your
changes):

git checkout master

git fetch upstream

git merge upstream/master
git checkout NEW_BRANCH_NAME
git rebase master

32.5 Make a Pull Request

You can now make a pull request on Ubiquity github repository .

194 Chapter 32. Contributing

https://semver.org
https://github.com/phpMv/ubiquity/blob/master/CHANGELOG.md#changelog
https://github.com/phpMv/ubiquity

CHAPTER 33

Coding guide

Note: Although the framework is very recent, please note some early Ubiquity classes do not fully follow this guide
and have not been modified for backward compatibility reasons. However all new codes must follow this guide.

33.1 Design choices

33.1.1 Fetching and using Services
Dependency injections
Avoid using dependency injection for all parts of the framework, internally. Dependency injection is a resource-
intensive mechanism:
* it needs to identify the element to instantiate ;

* then to proceed to its instantiation ;

* to finally assign it to a variable.

Getting services from a container
Also avoid public access to services registered in a service container. This type of access involves manipulating objects
whose return type is unknown, not easy to handle for the developer.

For example, It’s hard to manipulate the untyped return of $Sthis->serviceContainer->get ('translator'),
as some frameworks allow, and know which methods to call on it.

When possible, and when it does not reduce flexibility too much, the use of static classes is suggested:

For a developer, the TranslatorManager class is accessible from an entire project without any object instantiation.
It exposes its public interface and allows code completion:

195

ubiquity-framework Documentation, Release 2.0.9

* The translator does not need to be injected to be used;
¢ It does not need to be retrieved from a service container.

The use of static classes inevitably creates a strong dependency and affects flexibility. But to come back to the
Translator example, there is no reason to change it if it is satisfying. It is not desirable to want to provide flexibility at
all costs when it is not necessary, and then for the user to see that its application is a little slow.

33.2 Optimization

Execution of each line of code can have significant performance implications. Compare and benchmark implementa-
tion solutions, especially if the code is repeatedly called:

* Identify these repetitive and expensive calls with php profiling tools (Blackfire profiler , Tideways ...)

* Benchmark your different implementation solutions with phpMyBenchmarks

33.3 Code quality

Ubiquity use Scrutinizer-CI for code quality.
* For classes and methods :
— A or B evaluations are good
— C s acceptable, but to avoid if possible

— The lower notes are to be prohibited

33.3.1 Code complexity

* Complex methods must be split into several, to facilitate maintenance and allow reuse;

 For complex classes , do an extract-class or extract-subclass refactoring and split them using Traits;

33.3.2 Code duplications

Absolutely avoid duplication of code, except if duplication is minimal, and is justified by performance.

33.3.3 Bugs

Try to solve all the bugs reported as you go, without letting them accumulate.

33.4 Tests

Any bugfix that doesn’t include a test proving the existence of the bug being fixed, may be suspect. Ditto for new
features that can’t prove they actually work.

It is also important to maintain an acceptable coverage, which may drop if a new feature is not tested.

196 Chapter 33. Coding guide

https://blackfire.io
https://tideways.com
https://phpMyBenchmarks.kobject.net
https://scrutinizer-ci.com/g/phpMv/ubiquity/

ubiquity-framework Documentation, Release 2.0.9

33.5 Code Documentation

The current code is not yet fully documented, feel free to contribute in order to fill this gap.

33.6 Coding standards

Ubiquity coding standards are mainly based on the PSR-1 , PSR-2 and PSR-4 standards, so you may already know
most of them. The few intentional exceptions to the standards are normally reported in this guide.

33.6.1 Naming Conventions
* Use camelCase for PHP variables, members, function and method names, arguments (e.g. $modelsCacheDirec-
tory, isStarted());
» Use namespaces for all PHP classes and UpperCamelCase for their names (e.g. CacheManager);
* Prefix all abstract classes with Abstract except PHPUnit BaseTests;
¢ Suffix interfaces with Interface;
e Suffix traits with Trait;
* Suffix exceptions with Exception;
* Suffix core classes manager with Manager (e.g. CacheManager, TranslatorManager);
* Prefix Utility classes with U (e.g. UString, URequest);
» Use UpperCamelCase for naming PHP files (e.g. CacheManager.php);
» Use uppercase for constants (e.g. const SESSION_NAME="Ubiquity’).

33.6.2 Indentation, tabs, braces

* Use Tabs, not spaces; (!PSR-2)
» Use brace always on the same line; (IPSR-2)

 Use braces to indicate control structure body regardless of the number of statements it contains;

33.6.3 Classes

* Define one class per file;

* Declare the class inheritance and all the implemented interfaces on the same line as the class name;
* Declare class properties before methods;

* Declare private methods first, then protected ones and finally public ones;

* Declare all the arguments on the same line as the method/function name, no matter how many arguments there
are;

» Use parentheses when instantiating classes regardless of the number of arguments the constructor has;

* Add a use statement for every class that is not part of the global namespace;

33.5. Code Documentation 197

https://www.php-fig.org/psr/psr-1/
https://www.php-fig.org/psr/psr-2/
https://www.php-fig.org/psr/psr-4/

ubiquity-framework Documentation, Release 2.0.9

33.6.4 Operators

» Use identical comparison and equal when you need type juggling;

Example
Example
1
foo
0
bar
0 10

Important:

You can import this standardization files that integrates all these rules in your IDE:

198 Chapter 33. Coding guide

ubiquity-framework Documentation, Release 2.0.9

* Eclipse
* PhpStorm

If your preferred IDE is not listed, you can submit the associated standardization file by creating a new PR.

33.6. Coding standards 199

ubiquity-framework Documentation, Release 2.0.9

200 Chapter 33. Coding guide

CHAPTER 34

Documenting guide

Ubiquity has two main sets of documentation:
* the guides, which help you learn about manipulations or concepts ;
 and the API, which serves as a reference for coding.

You can help improve the Ubiquity guides by making them more coherent, consistent, or readable, adding missing
information, correcting factual errors, fixing typos, or bringing them up to date with the latest Ubiquity version.

To do so, make changes to Ubiquity guides source files (located here on GitHub). Then open a pull request to apply
your changes to the master branch.

When working with documentation, please take into account the guidelines.

201

ubiquity-framework Documentation, Release 2.0.9

202 Chapter 34. Documenting guide

CHAPTER 35

External libraries

203

ubiquity-framework Documentation, Release 2.0.9

204 Chapter 35. External libraries

CHAPTER 30

Ubiquity Caching

205

ubiquity-framework Documentation, Release 2.0.9

206 Chapter 36. Ubiquity Caching

CHAPTER 37

Ubiquity dependencies

e “php 7.4

e phpmv/ubiquity => Ubiquity core

37.1 In production

37.1.1 Templating

Twig is required if it is used as a template engine, which is not a requirement.

* twig/twig =>Template engine

37.2 In development

37.2.1 Webtools

* phpmv/ubiquity-dev => dev classes for webtools and devtools since v2.3.0

e phpmv/php-mv—-ui => Front library

* mindplay/annotations => Annotations library, required for generating models, cache. ..
* monolog/monolog =>Logging

e czproject/git-php => Git operations (+ require git console)

37.2.2 Devtools

e phpmv/ubiquity-devtools => Cli console

* phpmv/ubiquity-dev => dev classes for webtools and devtools since v2.3.0

207

ubiquity-framework Documentation, Release 2.0.9

* mindplay/annotations => Annotations library, required for generating models, cache. ..

37.2.3 Testing

* codeception/codeception => Tests
* codeception/c3 =>C3 integration

e phpmv/ubiquity—-codeception => Codeception for Ubiquity

208 Chapter 37. Ubiquity dependencies

CHAPTER 38

Indices and tables

* genindex
* modindex

e search

209

	Quick start with console
	Quick start with web tools
	Ubiquity-devtools installation
	Project creation
	Project configuration
	Devtools usage
	URLs
	Router
	Controllers
	Events
	Dependency injection
	CRUD Controllers
	Auth Controllers
	Database
	Models generation
	ORM
	DAO
	Request
	Response
	Session
	Cookie
	Views
	Assets
	Themes
	jQuery Semantic-UI
	Normalizers
	Validators
	Transformers
	Translation module
	Rest
	Webtools
	Contributing
	Coding guide
	Documenting guide
	External libraries
	Ubiquity Caching
	Ubiquity dependencies
	Indices and tables

